
Getting Results with
ComponentWorks™
Automation Symbols
ComponentWorks Automation Symbols
July 1998 Edition
Part Number 322063A-01

725 11,
91,
4 00,
7 1200,
Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 4130
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 8
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 37
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1998 National Instruments Corporation. All rights reserved.

 Important Information

enced
do not
riod.

ide
 costs

viewed
right to
should
ages

nal
rranty

follow

s,

nical,
hout

.

ility
edical
 of the
inical
uards,
 always
ntended
n health
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that
execute programming instructions if National Instruments receives notice of such defects during the warranty pe
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outs
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully re
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any dam
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. Natio
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The wa
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third partie
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, wit
the prior written consent of National Instruments Corporation.

Trademarks
ComponentWorks™, National Instruments™, and natinst.com ™ are trademarks of National Instruments Corporation

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliab
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving m
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part
user or application designer. Any use or application of National Instruments products for or involving medical or cl
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeg
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should
continue to be used when National Instruments products are being used. National Instruments products are NOT i
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard huma
and safety in medical or clinical treatment.

Contents
i
iii
iv
iv

-1
1-2
-2

-3
-4
-4
5
6
-7
-7
9
10
0
11
-11

-1

2
2

-3
4
-6
About This Manual
Organization of This Manual ...x
Conventions Used in This Manual...x
Related Documentation..x
Customer Communication ...x

Chapter 1
Introduction to ComponentWorks Automation Symbols

What Are ComponentWorks Automation Symbols?...1
System Requirements ..
Installing ComponentWorks ..1

Installing from Floppy Disks...1-3
Installed Files...1

About the ComponentWorks Controls ..1
Properties, Methods, and Events ...1
Object Hierarchy ...1-
Collection Objects ...1-

Setting the Properties of an ActiveX Control ..1
Using Property Pages ..1
Changing Properties Programmatically...1-
Item Method ..1-
Working with Control Methods...1-1
Developing Event Handler Routines ...1-

Learning Properties, Methods, and Events ..1

Chapter 2
Getting Started with the ComponentWorks Automation Symbols

Explore the ComponentWorks Documentation...2
Getting Results with ComponentWorks Automation Symbols Manual..........2-1
Automation Symbols Online Reference..2-

Accessing the Online Reference ...2-
Finding Specific Information ..2-3

Become Familiar with the Examples Structure ...2
Develop Your Application...2-
Seek Information from Additional Sources ...2
© National Instruments Corporation v ComponentWorks Automation Symbols

Contents

1

3

5

9

1

-6
8
9

-1
1
2
4

5
6

Chapter 3
Building ComponentWorks Applications with Visual Basic

Developing Visual Basic Applications.. 3-
Loading ComponentWorks Controls into the Toolbox................................... 3-2
Building the User Interface Using ComponentWorks 3-2

Using Property Pages.. 3-
Using Your Program to Edit Properties.. 3-4

Working with Control Methods .. 3-5
Developing Control Event Routines ... 3-
Using the Object Browser to Build Code in Visual Basic 3-6
Pasting Code into Your Program .. 3-
Adding Code Using Visual Basic Code Completion 3-9

Chapter 4
Building ComponentWorks Applications with Visual C++

Developing Visual C++ Applications ... 4-
Creating Your Application.. 4-2
Adding ComponentWorks Controls to the Visual C++ Controls Toolbar 4-3
Building the User Interface Using ComponentWorks 4-4
Programming with the ComponentWorks Controls.. 4-5
Using Properties.. 4
Using Methods .. 4-
Using Events ... 4-

Chapter 5
Building ComponentWorks Applications with Delphi

Running Delphi Examples... 5
Developing Delphi Applications ... 5-

Loading ComponentWorks Controls into the Component Palette.................. 5-
Building the User Interface ... 5-

Placing Controls ... 5-4
Using Property Pages.. 5-

Programming with ComponentWorks .. 5-
Using Your Program to Edit Properties.. 5-6
Using Methods.. 5-7
Using Events... 5-7
ComponentWorks Automation Symbols vi © National Instruments Corporation

Contents

-1
-2
-3

-6

-2
-2
-2
-3
4

-2
3
-3
3
-4
4
5
-5
-5
-6
6
-7
-7
-8
9

Chapter 6
Using the Pipe Control

Pipe Control Overview ..6
Using the Pipe Design Menu ...6
Customizing the Pipe ...6
Grid Settings ..6-5
CWPipeConnection ...6
Events...6-7

Chapter 7
Using the Pump, Valve, and Motor Controls

Overview..7-1
Events ..7

Tutorial: Pipe, Pump, and Valve Controls ...7
Designing the Form ...7
Developing the Program Code ..7
Testing Your Program ...7-

Chapter 8
Using the Vessel Control

Overview..8-1
Vessel Object...8
Pointers Collection ..8-
Pointer Object..8
Axis Object..8-
Ticks and Labels Objects...8
ValuePairs Collection..8-
ValuePair Object ...8-
Statistics Object ...8
Events ..8
Image Object ...8
Animation ..8-

Tutorial: Vessel Control...8
Designing the Form ...8
Developing the Program Code ..8
Testing Your Program ...8-
© National Instruments Corporation vii ComponentWorks Automation Symbols

Contents

6
8
-8

-3
-4

-6

9

2
3
-5

-10

4
5
-5
7

Appendix A
Common Questions

Appendix B
Distribution and Redistributable Files

Appendix C
Customer Communication

Glossary

Index

Figures
Figure 1-1. Vessel Control Object Hierarchy .. 1-
Figure 1-2. Visual Basic Default Property Page.. 1-
Figure 1-3. ComponentWorks Custom Property Page .. 1

Figure 3-1. Visual Basic Property Pages ... 3
Figure 3-2. ComponentWorks Custom Property Pages... 3
Figure 3-3. Selecting Events in the Code Window.. 3
Figure 3-4. Viewing CWMotor in the Object Browser ... 3-7
Figure 3-5. Viewing CWVessel in the Object Browser .. 3-8
Figure 3-6. Visual Basic 5 Code Completion.. 3-

Figure 4-1. New Dialog Box ... 4-
Figure 4-2. MFC AppWizard—Step 1 .. 4-
Figure 4-3. CWPipe Control Property Pages... 4
Figure 4-4. MFC ClassWizard—Member Variable Tab ... 4-6
Figure 4-5. Viewing Property Functions and Methods in the Workspace Window 4-7
Figure 4-6. Event Handler ... 4

Figure 5-1. Delphi Import ActiveX Control Dialog Box .. 5-2
Figure 5-2. ComponentWorks Controls on a Delphi Form 5-
Figure 5-3. Delphi Object Inspector .. 5-
Figure 5-4. ComponentWorks Pipe Control Property Pages................................... 5
Figure 5-5. Delphi Object Inspector Events Tab ... 5-
ComponentWorks Automation Symbols viii © National Instruments Corporation

Contents
Figure 6-1. Pipe Design Menu...6-2
Figure 6-2. Style Property Page for a Pipe Control ...6-3
Figure 6-3. Changing the Position of a Pipe Control ...6-4
Figure 6-4. Pipe Thickness and Fill Diameter of a Pipe Control6-4
Figure 6-5. Grid Property Page..6-5
Figure 6-6. Flange Width and Extent...6-6
Figure 6-7. End Diameter of a Pipe Control ..6-7

Figure 8-1. Vessel Control Hierarchy of Objects...8-2
Figure 8-2. Custom Mixer Bitmap...8-7

Tables
Table 2-1. Chapters about Specific Programming Environments..........................2-4
Table 2-2. Chapters about Specific Controls..2-5
© National Instruments Corporation ix ComponentWorks Automation Symbols

About This Manual
rks

i,

s

 how
 the

ls,

ing

ual
eir
The Getting Results with ComponentWorks Automation Symbols manual
contains the information you need to get started with the ComponentWo
Automation Symbols software package. ComponentWorks adds the
instrumentation-specific tools for use in Visual Basic, Visual C++, Delph
and other ActiveX control environments.

This manual contains step-by-step instructions for building application
with ComponentWorks Automation Symbols. You can modify these
sample applications to suit your needs. This manual does not show you
to use every control or solve every possible programming problem. Use
online reference for further, function-specific information.

To use this manual, you already should be familiar with one of the
supported programming environments and Windows NT/98/95.

Organization of This Manual
The Getting Results with ComponentWorks Automation Symbols manual is
organized as follows:

• Chapter 1, Introduction to ComponentWorks Automation Symbols,
contains an overview of the ComponentWorks Automation Symbo
lists the ComponentWorks system requirements, describes how to
install the software, and presents basic information about
ComponentWorks ActiveX controls.

• Chapter 2, Getting Started with the ComponentWorks Automation
Symbols, describes approaches to help you get started using
ComponentWorks Automation Symbols, depending on your
application needs, your experience using ActiveX controls in your
particular programming environment, and your specific goals in us
ComponentWorks.

• Chapter 3, Building ComponentWorks Applications with Visual Basic,
describes how you can use the ComponentWorks controls with Vis
Basic; insert the controls into the Visual Basic environment, set th
properties, and use their methods and events; and perform these
operations using ActiveX controls in general. This chapter also
outlines Visual Basic features that simplify working with ActiveX
controls.
© National Instruments Corporation xi ComponentWorks Automation Symbols

About This Manual

l

 how

rd

e

i;
,
sing

 can

nly
w

ic

cts
• Chapter 4, Building ComponentWorks Applications with Visual C++,
describes how you can use ComponentWorks controls with Visua
C++, explains how to insert the controls into the Visual C++
environment and create the necessary wrapper classes, shows you
to create an application compatible with the ComponentWorks
controls using the Microsoft Foundation Classes Application Wiza
(MFC AppWizard) and how to build your program using the
ClassWizard with the controls, and discusses how to perform thes
operations using ActiveX controls in general.

• Chapter 5, Building ComponentWorks Applications with Delphi,
describes how you can use ComponentWorks controls with Delph
insert the controls into the Delphi environment, set their properties
and use their methods and events; and perform these operations u
ActiveX controls. This chapter also outlines Delphi features that
simplify working with ActiveX controls.

• Chapter 6, Using the Pipe Control, describes how to use the
ComponentWorks Pipe automation symbol to customize your
application interface. It also outlines the most commonly used
properties, methods, and events for the Pipe control and how you
use them in typical applications.

• Chapter 7, Using the Pump, Valve, and Motor Controls, describes how
to use the ComponentWorks Pump, Valve, and Motor automation
symbols to customize your application interface.

• Chapter 8, Using the Vessel Control, describes how to use the
ComponentWorks Vessel control to customize your application
interface to suit your needs. This chapter outlines the most commo
used properties, methods and events for the Vessel control and ho
they are applied in typical applications

• Appendix A, Common Questions, contains a list of answers to
frequently asked questions. It contains general ComponentWorks
questions as well as specific Automation Symbols and Visual Bas
questions.

• Appendix B, Distribution and Redistributable Files, contains
information about ComponentWorks Automation Symbols 1.0
redistributable files and distributing applications that use
ComponentWorks Automation Symbols controls.

• Appendix C, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our produ
and manuals.
ComponentWorks Automation Symbols xii © National Instruments Corporation

About This Manual

ions

 box

ion
• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

Conventions Used in This Manual
The following conventions are used in this manual:

<> Angle brackets enclose the name of a key on the keyboard—for example,
<Shift>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Control-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog box opt
to a final action. The sequence File»Page Setup»Options»Substitute
Fonts directs you to pull down the File menu, select the Page Setup item,
select Options, and finally select the Substitute Fonts options from the
last dialog box.

This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

bold Bold text denotes the names of menus, menu items, parameters, dialog
buttons or options, icons, windows, or LEDs.

bold italic Bold italic text denotes a note.

italic Italic text denotes variables, emphasis, a cross reference, or an introduct
to a key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows 3.x.

monospace Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions,
operations, variables, file names and extensions, and for statements and
comments taken from programs.
© National Instruments Corporation xiii ComponentWorks Automation Symbols

About This Manual

s or

rive

d,

ur
e it
tion
monospace italic Italic text in this font denotes that you must enter the appropriate word
values in the place of these items.

paths Paths in this manual are denoted using backslashes (\) to separate d
names, directories, folders, and files.

Related Documentation

• ComponentWorks Automation Symbols Online Reference, which you
can open from the Windows Start menu (Programs»National
Instruments ComponentWorks» Automation
Symbols»ComponentWorks Automation Symbols Reference)

If you have one of the ComponentWorks development systems installe
you will also have the following documentation.

• Getting Results with ComponentWorks

• ComponentWorks Online Reference, which you can open from the
Windows Start menu (Programs»National Instruments
ComponentWorks»ComponentWorks Reference)

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with o
products, and we want to help if you have problems with them. To mak
easy for you to contact us, this manual contains comment and configura
forms for you to complete. These forms are in Appendix C, Customer
Communication, at the end of this manual.
ComponentWorks Automation Symbols xiv © National Instruments Corporation

© National Instruments Corporation 1-1 ComponentWorks Aut
1

n
how

ny
as
e
cific
l

e
g

nal

es.

s
s.
Introduction to
ComponentWorks
Automation Symbols

This chapter contains an overview of the ComponentWorks Automatio
Symbols, lists the ComponentWorks system requirements, describes
to install the software, and presents basic information about
ComponentWorks ActiveX controls.

What Are ComponentWorks Automation Symbols?
The ComponentWorks Automation Symbols are a collection of ActiveX
controls for building industrial process visualization user interfaces in a
compatible ActiveX control container. ActiveX controls also are known
OLE (object linking and embedding) controls, and the two terms can b
used interchangeably in this context. Use the online reference for spe
information about the properties, methods, and events of the individua
ActiveX controls. You can access this information by selecting
Programs»National Instruments ComponentWorks»Automation
Symbols»ComponentWorks Automation Symbols Reference from the
Windows Start menu.

With Automation Symbols, you can develop advanced custom user
interfaces for your industrial process monitor or control application. Th
ComponentWorks Automation Symbols package contains the followin
components:

• Pipe Control—ActiveX control for building pipe, wire, and line
representations including flanges, multiple connections, and diago
components.

• Motor Control—ActiveX control with several different display styles
to represent a motor in your system. You can import custom imag

• Pump Control—ActiveX control with several different display style
to represent a pump in your system. You can import custom image
omation Symbols

Chapter 1 Introduction to ComponentWorks Automation Symbols

s.

e
er

eet

r,

es.

ith

 you

ive
• Valve Control—ActiveX control with several different display styles
to represent a valve in your system. You can import custom image

• Vessel Control—ActiveX control with several different styles to
represent a vessel, hopper, or tank in your system.

The ComponentWorks ActiveX controls are designed for use in
Visual Basic, a premier ActiveX control container application. Some
ComponentWorks features and utilities have been incorporated with th
Visual Basic user in mind. However, you can use ActiveX controls in oth
applications that support them, including Visual C++ and Delphi.

System Requirements
To use the ComponentWorks ActiveX controls, your computer must m
the following minimum requirements:

• Personal computer using at least a 33 MHz 80486 or higher
microprocessor (National Instruments recommends a 90 MHz
Pentium or higher microprocessor)

• Microsoft Windows NT/98/95

• VGA resolution (or higher) video adapter

• 32-bit ActiveX control container such as Visual Basic 4.0 or greate
Visual C++ 4.x or greater, or Delphi

• Minimum of 16 MB of memory

• Minimum of 10 MB of free hard disk space

• Microsoft-compatible mouse

Installing ComponentWorks
The ComponentWorks Automation Symbols setup program installs the
ActiveX controls through a process that lasts approximately five minut

Note To install ComponentWorks on a Windows NT system, you must be logged in w
Administrator privileges.

1. Make sure that your computer and monitor are turned on and that
have installed Windows NT/98/95.

2. Insert the ComponentWorks Automation Symbols CD in the CD dr
of your computer. From the CD startup screen, click Install
ComponentWorks Automation Symbols. If the CD startup screen
ComponentWorks Automation Symbols 1-2 © National Instruments Corporation

Chapter 1 Introduction to ComponentWorks Automation Symbols

nt

nt
ure
ller

py

 in

ot

does not appear, use Windows Explorer to run the SETUP.EXE
program in the \Setup directory on the CD.

3. Follow the instructions on the screen. The installer provides differe
options for setting the directory in which the ComponentWorks
Automation Symbols is installed and choosing examples for differe
programming environments. Use the default settings if you are uns
about which settings to choose. If necessary, you can run the insta
at a later time to install additional components.

Installing from Floppy Disks
If your computer does not have a CD drive, you can copy the files to flop
disks and install the controls from those disks, as described by the
following steps.

1. On another computer with a CD drive and disk drive, copy the files
the individual subdirectories of the \Setup\disks directory on the
CD onto individual 3.5 inch floppy disks. The floppy disks should n
contain any directories and should be labeled disk1 , disk2 , and so
on, following the name of the source directories.

2. On the target computer, insert the floppy disk labeled disk1 and run
the setup.exe program from the floppy disk.

3. Follow the on-screen instructions to complete the installation.

Installed Files
The ComponentWorks Automation Symbols setup program installs the
following groups of files on your hard disk.

• ActiveX controls, documentation, and other associated files

Directory: \Windows\System\

Files: cwas.ocx , cwas.dep , cwas.hlp , cwas.cnt

• Example programs and applications

Directory: \ComponentWorks\Samples\...

• Tutorial programs

Directory: \ComponentWorks\Tutorials-Automation\...

• Miscellaneous files

Directory: \ComponentWorks\

Note You select the location of the \ComponentWorks\... directory during
installation.
© National Instruments Corporation 1-3 ComponentWorks Automation Symbols

Chapter 1 Introduction to ComponentWorks Automation Symbols

orks

rt

d
e

 that
ance

 the
About the ComponentWorks Controls
This section presents background information about the ComponentW
ActiveX controls. Make sure you understand these concepts before
continuing. You also should refer to your programming environment
documentation for more information about using ActiveX controls in
that environment.

Properties, Methods, and Events
ActiveX controls consist of three different parts—properties, methods,
and events—used to implement and program the controls.

Properties are the attributes of a control. These attributes describe the
current state of the control and affect the display and behavior of the
control. The values of the properties are stored in variables that are pa
of the control.

Methods are functions defined as part of the control. Methods are calle
with respect to a particular control and usually have some effect on th
control itself. The operation of most methods is affected by the current
property values of the control.

Events are notifications generated by a control in response to some
particular occurrence. Events are passed to the control container
application to execute a subroutine in the program (event handler).

For example, the ComponentWorks Pipe control has several properties
determine how the Pipe looks and operates. To customize the appear
and behavior of the pipe, you can set properties for color, width,
connections, display styles, and more.

The Pipe control has methods that you can call to change the state of
control. For example, use the SetBuiltinStyle method to set the Pipe
control to a predefined style.

The Pipe control generates events when particular operations occur.
For example, when you click the pipe, the control passes an event to
your program.
ComponentWorks Automation Symbols 1-4 © National Instruments Corporation

Chapter 1 Introduction to ComponentWorks Automation Symbols

ten
he
rts
rol.
 an

t

 a
Object Hierarchy
The three parts of an ActiveX control—properties, methods, and
events—are stored in a software object. Because some ActiveX controls
are very complex and contain many properties, ActiveX controls are of
subdivided into different software objects, the sum of which make up t
ActiveX control. Each individual object in a control contains specific pa
(properties) and functionality (methods and events) of the ActiveX cont
The relationships among different objects of a control are maintained in
object hierarchy. At the top of the hierarchy is the control itself.

This top-level object contains its own properties, methods, and events.
Some of the top-level object properties are actually references to other
objects that define specific parts of the control. Objects below the top level
have their own methods and properties, and their properties can be
references to other objects. The number of objects in a hierarchy is no
limited.

Another advantage of subdividing controls is the reuse of different objects
between different controls. One object might be used at different places in
the same object hierarchy or in several different object hierarchies.

Figure1-1 shows the object hierarchy of the ComponentWorks Vessel
control. The Vessel object contains some of its own properties, such as
Name and BackColo r . It also contains properties, such as Axis and
Pointers , which are separate objects. The Axis object contains
information about the axis used on the vessel and has other properties
such as Maximum and Minimum .

The Pointers collection object is a special type of object referred to as
collection. The Pointers collection contains several Pointer objects of its
own, each describing one pointer on the vessel control. (A pointer is one fill
level displayed on the vessel, and you can display multiple levels on one
vessel.) Each Pointer object has properties, such as Value , while the
Pointers collection object has the property Count .
© National Instruments Corporation 1-5 ComponentWorks Automation Symbols

Chapter 1 Introduction to ComponentWorks Automation Symbols

e
f

m).

he
ct
Figure 1-1. Vessel Control Object Hierarchy

Collection Objects
One object can contain several objects of the same type. For example,
aVessel object contains several Pointer objects, each representing on
pointer or fill level on the vessel. The number of objects in the group o
objects might not be defined and might change while the program is
running (that is, you can add or remove pointers as part of your progra
To handle these groups of objects more easily, an object called a collection
is created.

A collection is an object that contains or stores a varying number of objects
of the same type. You can consider a collection as an array of objects. T
name of a collection object is usually the plural of the name of the obje
type contained within the collection. For example, a collection of Pointer
objects is referred to as Pointers. In the ComponentWorks software, the
terms object and collection are not used, only the type names such as
Pointer and Pointers.

Vessel Cont rol
Properties such as

Color, Font

Axis Object
Properties such as

AutoScale, Maximum

Pointer Object
Properties such as
Color, PointerStyle

Labels Object
Properties such as

Left, Color

Ticks Object
Properties such as
Inside, Major Ticks

Statistics Object
Properties such as

 Maximum

Value Pairs
Collection

Property: Count

Value Pair Object
Properties:

Name, Value

Pointe rs
Collection

Property: Count
ComponentWorks Automation Symbols 1-6 © National Instruments Corporation

Chapter 1 Introduction to ComponentWorks Automation Symbols

s

 or

hen
ight

ular
ou

ck

trol
t at

am

 you

t edit
Each collection object contains an Item method that you can use to acces
any particular object stored in the collection. Refer to the Changing
Properties Programmatically section later in this chapter for information
about the Item method and accessing particular objects stored in the
collection.

Setting the Properties of an ActiveX Control
You can set the properties of an ActiveX control from its property pages
from within your program.

Using Property Pages
Property pages are common throughout the Windows environments. W
you want to change the appearance or options of a particular object, r
click the object and select Properties. A property page or tabbed dialog
box appears with a variety of properties that you can set for that partic
object. You customize ActiveX controls in exactly the same way. Once y
place the control on a form in your programming environment, right cli
the control and select Properties to customize the appearance and
operation of the control.

Use the property pages to set the property values for each ActiveX con
while you are creating your application. The property values you selec
this point represent the state of the control at the beginning of your
application. You can change the property values from within your progr
as described in the next section, Changing Properties Programmatically.

In some programming environments (such as Visual Basic and Delphi),
have two different property pages. The property page common to the
programming environment is called the default property page; it contains
the most basic properties of a control.

Your programming environment assigns default values for some of the
basic properties, such as the control name and the tab order. You mus
these properties through the default property page.
© National Instruments Corporation 1-7 ComponentWorks Automation Symbols

Chapter 1 Introduction to ComponentWorks Automation Symbols

l

ls.
Figure 1-2 shows the Visual Basic default property page for the Vesse
control.

Figure 1-2. Visual Basic Default Property Page

The second property page is called the custom property page. The layout
and functionality of the custom property pages vary for different contro
Figure 1-3 shows the custom property page for the Pipe control.

Figure 1-3. ComponentWorks Custom Property Page
ComponentWorks Automation Symbols 1-8 © National Instruments Corporation

Chapter 1 Introduction to ComponentWorks Automation Symbols

For

s

me)
alue

, use
erty
.

n

he

ox
Changing Properties Programmatically
You can set or read the properties of your controls programmatically.
example, if you want to change the state of the Motor control during
program execution, change the Value property from True to False or
from False to True .

Note The exact syntax for reading and writing property values depends on the
programming language. Refer to the appropriate Building ComponentWorks
Applications chapter for information about using ComponentWorks in your
programming environment. Code examples are written in Visual Basic, which i
similar to most implementations.

Each control you create in your program has a name (like a variable na
that you use to reference the control in your program. You can set the v
of a property on a top-level object with the following syntax.

name.property = new_value

For example, you can change the Value property of a Motor control to off
using the following line of code, where CWMotor1 is the default name of
the Motor control.

CWMotor1.Value = False

To access properties of sub-objects referenced by the top-level object
the control name, followed by the name of the sub-object and the prop
name. For example, consider the following code for the Vessel control

CWVessel1.Axis.Maximum = 100

In the above code, Axis is a property of the Vessel control and refers to a
Axis object. Maximum is one of several Axis properties.

You can retrieve the value of control properties from your program in t
same way. For example, you can print the value of the Value property.

Print CWValve1.Value

You can display the minimum of the vessel axis in a Visual Basic text b
with the following code.

Text1.Text = CWVessel1.Axis.Minimum
© National Instruments Corporation 1-9 ComponentWorks Automation Symbols

Chapter 1 Introduction to ComponentWorks Automation Symbols

r on

 the
ject

t
re
 your

 set

al in

turn
Item Method
To access an object or its properties in a collection, use the Item method
on the collection object. For example, set the value of the second pointe
a vessel with the following code.

CWVessel1.Pointers.Item(2).Value = 5.0

The term CWVessel1.Pointers.Item(2) refers to the second Pointer
object in the Pointers collection of the Vessel object. The parameter of
Item method is an integer representing the (one-based) index of the ob
in the collection. You also can reference the object by name.

CWVessel1.Pointers.Item("Water")

Because the Item method is the most commonly used method on a
collection, it is referred to as the default method. Therefore, some
programming environments do not require you to specify the .Item

method. For example, in Visual Basic

CWVessel1.Pointers(2).Value = 5.0

is programmatically equivalent to

CWVessel1.Pointers.Item(2).Value = 5

Working with Control Methods
ActiveX controls and objects have their own methods, or functions, tha
you can call from your program. Methods can have parameters that a
passed to the method and return values that pass information back to
program.

For example, the SetBuiltinStyle method has one parameter—
a constant value defining which default style to apply to the control. To
a Vessel control to the default hopper style, use

CWVessel1.SetBuiltinStyle CWVesselStyleHopper

Methods can have multiple parameters, some of which might be option
some programming environments.

Depending on your programming environment, parameters might be
enclosed in parentheses. If the function or method is not assigned a re
variable, Visual Basic does not use parentheses to pass parameters.
ComponentWorks Automation Symbols 1-10 © National Instruments Corporation

Chapter 1 Introduction to ComponentWorks Automation Symbols

r
ls.

out

at can

ost

ing
nd
Developing Event Handler Routines
After configuring your controls on a form, you can create event handle
routines in your program to respond to events generated by the contro
When the user clicks a Motor, Pump, or Vessel control at run time, the
control changes the state or value of the control and fires (generates) an
event.

To develop the event routine code, most programming environments
generate a skeleton function to handle each event. For information ab
generating these function skeletons, refer to Chapter 3, Building
ComponentWorks Applications with Visual Basic, Chapter 4, Building
ComponentWorks Applications with Visual C++, and Chapter 5, Building
ComponentWorks Applications with Delphi. For example, the Visual Basic
environment generates the following function skeleton into which you
insert the functions to call when the ValueChanged event occurs.

Private Sub CWMotor1_ValueChanged(ByVal Value As

Boolean)

End Sub

In most cases, the event also returns some data to the event handler th
be used in your event handler routine, such as the Value parameter in the
previous example.

Learning Properties, Methods, and Events
The ComponentWorks Automation Symbols Online Reference contains
detailed information about each control and its associated properties,
methods, and events. You can open the online reference from within m
programming environments by clicking the Help button in the custom
property pages, or you can open it from the Windows Start menu by
selecting Programs»National Instruments ComponentWorks»
Automation Symbols»ComponentWorks Automation Symbols
Reference.

Some programming environments have built-in mechanisms for detail
the available properties, methods, and events for a particular control a
sometimes include automatic links to the help file.
© National Instruments Corporation 1-11 ComponentWorks Automation Symbols

© National Instruments Corporation 2-1 ComponentWorks Aut
2

n

earn
is
ces

 the

ing

s,
trols
Getting Started with the
ComponentWorks Automation
Symbols

This chapter describes approaches to help you get started using
ComponentWorks Automation Symbols, depending on your applicatio
needs, your experience using ActiveX controls in your particular
programming environment, and your specific goals in using
ComponentWorks.

Explore the ComponentWorks Documentation
The printed and online manuals contain the information necessary to l
and effectively use the ComponentWorks Automation Symbols. Use th
manual to learn how to build industrial process visualization user interfa
with the automation symbols.

After you understand the operation and organization of the controls, use
ComponentWorks Automation Symbols online reference to obtain
information about specific features of each control.

Getting Results with ComponentWorks Automation Symbols Manual
This manual contains two parts.

• Building ComponentWorks Applications—These chapters describe
how to use ActiveX controls in the most commonly used programm
environments—Visual Basic, Visual C++, and Delphi.

If you are familiar with using ActiveX controls in these environment
you might not need to read these chapters. If you are using the con
in another environment, consult your programming environment
documentation for information about using ActiveX controls. For
information about additional environments, you can check the
ComponentWorks Support Web site (www.natinst.com/support) .
omation Symbols

Chapter 2 Getting Started with the ComponentWorks Automation Symbols

ter
ed
ort
ead

s,

rial
ols.

 as
ou
ks.

earch

to
ry
 a

ty
• Using the Automation Symbols—These chapters describe the basic
operation of the ComponentWorks Automation Symbols. Each chap
contains an overview of a control, describing its most commonly us
properties, methods, and events. The description also includes sh
code segments to illustrate programmatic control and tutorials that l
you through building an application with the control.

Automation Symbols Online Reference
The ComponentWorks Automation Symbols online reference includes
complete reference information for all controls—all properties, method
and events for every control—as well as the text from this manual.

To use the online reference efficiently, you should understand the mate
presented in this manual about using ComponentWorks ActiveX contr

After going through this manual and tutorials, use the online reference
your main source of information. Refer to the online reference when y
need specific information about a particular feature in ComponentWor

Accessing the Online Reference
You can open the online reference from the Windows Start
menu (Programs»National Instruments ComponentWorks»
Automation Symbols»ComponentWorks Automation Symbols
Reference). The reference opens to the main contents page. From the
contents page, you can browse the contents of the online reference or s
for a particular topic.

Most programming environments support some type of automatic link
the online reference from within the environment, often the <F1> key. T
selecting the control on a form or placing the cursor in code specific to
control and pressing <F1> to open the online reference.

In most environments, the property pages for the ComponentWorks
controls include a Help button that provides information about the proper
pages.
ComponentWorks Automation Symbols 2-2 © National Instruments Corporation

Chapter 2 Getting Started with the ComponentWorks Automation Symbols

ect
,

o

ction

he
o
ur

ted

ded
Finding Specific Information
To find information about a particular control or feature of a control, sel
the Index tab under the Help Topics page. Enter the name of the control
property, method, or event. Control names always begin with CW (for
example, CWValve). Property, method, and event names are identical t
those used in the code (for example, Name, Font , Enabled).

One group of objects that frequently generates questions are the Colle
objects. Search the online reference for Collections and the Item
method for more information. You also can find information about
collection objects in the Collection Objects section of Chapter 1,
Introduction to ComponentWorks Automation Symbols.

Become Familiar with the Examples Structure
The examples installed with ComponentWorks show you how to use t
controls in applications. You can use these examples as a reference t
become more familiar with the use of the controls, or you can build yo
application by expanding one of the examples.

When you install ComponentWorks, you can install examples for selec
programming environments. The examples are located in the
\ComponentWorks\Samples directory, organized by programming
environment (\Visual Basic , \Visual C++, and so on), and grouped in
the Automation Symbols folder under each language. Within these
directories, the examples are further subdivided by functionality.

The online reference includes a searchable list of all the examples inclu
with ComponentWorks Automation Symbols. Select Examples to see the
list of examples.
© National Instruments Corporation 2-3 ComponentWorks Automation Symbols

Chapter 2 Getting Started with the ComponentWorks Automation Symbols

iar

X

r

t
Develop Your Application
Depending on your experience with your programming environment,
ActiveX controls, and ComponentWorks, you can get started using
ComponentWorks in some of the following ways.

Are you new to your particular programming environment?

Spend some time using and programming in your development
environment. Check the documentation that accompanies your
programming environment for getting started information or tutorials,
especially tutorials that describe using ActiveX controls in that
environment. If you have specific questions, search the online
documentation of your development environment. After becoming famil
with the programming environment, continue with the following steps.

Are you new to using ActiveX controls or do you need to learn how to
use ActiveX controls in a specific programming environment?

Make sure you have read and understand the information about Active
controls in Chapter 1, Introduction to ComponentWorks
Automation Symbols, and the appropriate chapter about your specific
programming environment. Refer to Table 2-1 to find out which chapte
you should read for your specific programming environment.

If you use Borland C++ Builder, most of Chapter 5, Building
ComponentWorks Applications with Delphi, pertains to you. If you use
another programming environment, see the ComponentWorks Suppor
Web site (www.natinst.com/support) for current information about
particular environments.

Table 2-1. Chapters about Specific Programming Environments

Environment Read This Chapter

Microsoft Visual Basic Chapter 3, Building ComponentWorks
Applications with Visual Basic

Microsoft Visual C++ Chapter 4, Building ComponentWorks
Applications with Visual C++

Borland Delphi Chapter 5, Building ComponentWorks
Applications with Delphi
ComponentWorks Automation Symbols 2-4 © National Instruments Corporation

Chapter 2 Getting Started with the ComponentWorks Automation Symbols

ls
ach
ods,
re
ith

g

l in

d
 or
 by

ar
 on
Regardless of the programming environment you use, consult its
documentation for information about using ActiveX controls. After
becoming familiar with using ActiveX controls in your environment,
continue with the following steps.

Are you familiar with ActiveX controls but need to learn
ComponentWorks controls, hierarchies, and features?

If you are familiar with using ActiveX controls, including collection
objects and the Item method, read the chapters pertaining to the contro
you want to use. Chapters 6 through 8 provide basic information about e
of the controls and describe their most commonly used properties, meth
and events. These chapters also offer tutorials to help you become mo
familiar with using the controls. Solutions to each tutorial are installed w
your software (\ComponentWorks\Tutorials-Automation

Symbols).

After becoming familiar with the information in these chapters, try buildin
applications with the ComponentWorks controls. You can find detailed
information about all properties, methods, and events for every contro
the online reference.

Do you want to develop applications quickly or modify existing
examples?

If you are familiar with using ActiveX controls, including collections an
the Item method, and have some experience using ComponentWorks
other National Instruments products, you can get started more quickly
looking at the examples.

Most examples demonstrate how to perform operations with a particul
control. Generally, the examples avoid presenting complex operations
more than one control. To become familiar with a control, look at the

Table 2-2. Chapters about Specific Controls

Controls Read This Chapter

Pipe Chapter 6, Using the Pipe Control

Pump, Valve, and Motor Chapter 7, Using the Pump, Valve,
and Motor Controls

Vessel Chapter 8, Using the Vessel Control
© National Instruments Corporation 2-5 ComponentWorks Automation Symbols

Chapter 2 Getting Started with the ComponentWorks Automation Symbols

g

e

,

rties

ple

ties

n

t of
se
e

ort

ng

er
example for that control. Then, you can combine different programmin
concepts from the different controls in your application.

The examples include comments to provide more information about th
steps performed in the example. The examples avoid complex
programming tasks specific to one programming environment; instead
they focus on showing you how to perform operations using the
ComponentWorks controls. When developing applications with ActiveX
controls, you do a considerable amount of programming by setting
properties in the property pages. Check the value of the control prope
in the examples because the values greatly affect the operation of the
example programs. In some cases, the actual source code in an exam
might not differ from other examples; however, the values of the proper
change the example significantly.

Seek Information from Additional Sources
After working with the ComponentWorks controls, you might need to
consult other sources if you have questions. The following sources ca
provide you with more specific information.

• ComponentWorks Automation Symbols Online Reference—The online
reference includes the complete reference documentation and tex
this manual. If you cannot find a particular topic in the index, choo
the Find tab in the Help Topics page to search the complete text of th
online reference.

• ComponentWorks Support Web Site—The ComponentWorks Supp
Web site, as part of the National Instruments Support Web site
(www.natinst.com/support), contains up-to-date support
information. You can find application and support notes and
information about using ComponentWorks in additional programmi
environments. The Web site also contains the KnowledgeBase, a
searchable database containing thousands of entries answering
common questions related to the use of ComponentWorks and oth
National Instruments products.
ComponentWorks Automation Symbols 2-6 © National Instruments Corporation

© National Instruments Corporation 3-1 ComponentWorks Aut
3

ls
nt,
ese
s

5

l

for
ls

the

nes)

ent
Building ComponentWorks
Applications with Visual Basic

This chapter describes how you can use the ComponentWorks contro
with Visual Basic 5; insert the controls into the Visual Basic environme
set their properties, and use their methods and events; and perform th
operations using ActiveX controls in general. This chapter also outline
Visual Basic features that simplify working with ActiveX controls.

Note The descriptions and figures in this chapter apply specifically to the Visual Basic
environment.

Developing Visual Basic Applications
The following procedure explains how you can start developing Visua
Basic applications with ComponentWorks.

1. Select the type of application you want to build. Initially select a
Standard EXE for your application type.

2. Design the form. A form is a window or area on the screen on which
you can place controls and indicators to create the user interface
your program. The toolbox in Visual Basic contains all of the contro
available for developing the form.

3. After placing each control on the form, configure the properties of
control using the default and custom property pages.

Each control on the form has associated code (event handler routi
in your Visual Basic program that automatically executes when the
user operates that control.

4. To create this code, double click the control while editing your
application, and the Visual Basic code editor opens to a default ev
handler routine.
omation Symbols

Chapter 3 Building ComponentWorks Applications with Visual Basic

ust
dd

ol

eate
ect

bed

ox,
trols
rag
fter
e a
 the
ouse
rder
Loading ComponentWorks Controls into the Toolbox
Before building an application using ComponentWorks controls, you m
add them to the Visual Basic toolbox. Use the following procedure to a
ComponentWorks controls to the project toolbox.

1. In a new Visual Basic project, right click the toolbox and select
Components.

2. Place a checkmark in the box next to National Instruments CW
Automation Symbols.

If the ComponentWorks controls are not in the list, select the contr
files from the \Windows\System(32) directory by pressing the
Browse button.

If you need to use the ComponentWorks controls in several projects, cr
a new default project in Visual Basic 5 to include them. The default proj
serves as a template.

1. Create a new Standard EXE application in the Visual Basic
environment.

2. Add the ComponentWorks controls to the project toolbox as descri
in the preceding procedure.

3. Save the form and project in the \Template\Projects directory in
your Visual Basic directory.

4. Give the form and project a descriptive name, such as CWForm and
CWProject .

After creating this default project, you have a new option, CWProject , that
includes the ComponentWorks controls in the New Project dialog box by
default.

Building the User Interface Using ComponentWorks
After you add the ComponentWorks controls to the Visual Basic toolb
use them to create the front panel of your application. To place the con
on the form, select the corresponding icon in the toolbox and click and d
the mouse on the form. This step creates the corresponding control. A
you create controls, move and size them by using the mouse. To mov
control, click and hold the mouse on the control and drag the control to
desired location. To resize a control, select the control and place the m
pointer on one of the hot spots on the border of the control. Drag the bo
to the desired size.
ComponentWorks Automation Symbols 3-2 © National Instruments Corporation

Chapter 3 Building ComponentWorks Applications with Visual Basic

ties

1)
).
e and

eet,

rty
e
Once ActiveX controls are placed on the form, you can edit their proper
using their property pages. You can edit the properties from within the
Visual Basic program at run time.

Using Property Pages
After placing a control on a Visual Basic form, configure the control by
setting its properties in the Visual Basic property pages (see Figure 3-
and ComponentWorks custom control property pages (see Figure 3-2
Visual Basic assigns some default properties, such as the control nam
the tab order. When you create the control, you can edit these default
properties in the Visual Basic default property page. To access this sh
select a control and select View»Properties Window, or press <F4>. To
edit a property, highlight the property value on the right side of the prope
page and type in the new value or select it from a pull-down menu. Th
most important property in the default property page is Name, which is used
to reference the control in the program.

Figure 3-1. Visual Basic Property Pages
© National Instruments Corporation 3-3 ComponentWorks Automation Symbols

Chapter 3 Building ComponentWorks Applications with Visual Basic

e

 in
y as
 a

, use
erty
.

n

he
Edit all other properties of an ActiveX control in the custom property
pages. To open the custom property pages, right click the control on th
form and select Properties or select the control and press <Shift-F4>.

Figure 3-2. ComponentWorks Custom Property Pages

Using Your Program to Edit Properties
You can set and read the properties of your controls programmatically
Visual Basic. Use the name of the control with the name of the propert
you would with any other variable in Visual Basic. The syntax for setting
property in Visual Basic is name.property = new value .

For example, you can change the Value property of a Motor control to off
using the following line of code, where CWMotor1 is the default name of
the Motor control.

CWMotor1.Value = False

To access properties of sub-objects referenced by the top-level object
the control name, followed by the name of the sub-object and the prop
name. For example, consider the following code for the Vessel control

CWVessel1.Axis.Maximum = 100

In the above code, Axis is a property of the Vessel control and refers to a
Axis object. Maximum is one of several Axis properties.

You can retrieve the value of control properties from your program in t
same way. For example, you can print the value of the Value property.

Print CWValve1.Value
ComponentWorks Automation Symbols 3-4 © National Instruments Corporation

Chapter 3 Building ComponentWorks Applications with Visual Basic

x

the

turn

ing
e

,
e,

 the

 in
other
r an
e

or
me,
ndler
ed
You can display the axis minimum of a vessel in a Visual Basic text bo
with the following code.

Text1.Text = CWVessel1.Axis.Minimum

Working with Control Methods
Calling the methods of an ActiveX control in Visual Basic is similar to
working with the control properties. To call a method, add the name of
method after the name of the control (and sub-object if applicable).
Methods can have parameters that you pass to the method and can re
values that pass information back to your program. For example, the
SetBuiltinStyle method has one parameter—a constant value defin
which default style to apply to the control. To set a Vessel control to th
default hopper style, use the following code.

CWVessel1.SetBuiltinStyle CWVesselStyleHopper

In Visual Basic, if you call a method without assigning a return variable
any parameters passed to the method are listed after the method nam
separated by commas without parentheses.

CWMotor1.Move 10, 10, 100, 100

If you assign the return value of a method to a return variable, enclose
parameters in parentheses.

Developing Control Event Routines
After configuring your controls on the form, write Visual Basic code to
respond to events on the controls. The controls generate these events
response to user interactions with the controls or in response to some
occurrence in the control. To develop the event handler routine code fo
ActiveX control in Visual Basic, double click the control to open the cod
editor, which automatically generates a default event handler routine f
the control. The event handler routine skeleton includes the control na
the default event, and any parameters that are passed to the event ha
routine. The following code is an example of the event routine generat
for the Motor control. This event routine (ValueChanged) is called when
the value changes.

Private Sub CWMotor1_ValueChanged(ByVal As Boolean)

End Sub
© National Instruments Corporation 3-5 ComponentWorks Automation Symbols

Chapter 3 Building ComponentWorks Applications with Visual Basic

wn

e to

nd
 of
. To

ular
r.
f
l file
To generate an event handler for a different event of the same control,
double click the control to generate the default handler, and select the
desired event from the right pull-down menu in the code window, as sho
in the Figure 3-3.

Figure 3-3. Selecting Events in the Code Window

Use the left pull-down menu in the code window to change to another
control without going back to the form window.

Using the Object Browser to Build Code in Visual Basic
Visual Basic includes a tool called the Object Browser that you can us
work with ActiveX controls while creating your program. The Object
Browser displays a detailed list of the available properties, methods, a
events for a particular control. It presents a three-step hierarchical view
controls or libraries and their properties, methods, functions, and events
open the Object Browser, select View»Object Browser or press <F2>.

In the Object Browser, use the top left pull-down menu to select a partic
ActiveX control file. You can select any currently loaded control or drive
The Classes list on the left side of the Object Browser displays a list o
controls, objects, and function classes available in the selected contro
or driver.
ComponentWorks Automation Symbols 3-6 © National Instruments Corporation

Chapter 3 Building ComponentWorks Applications with Visual Basic

he
ject
t

tion
 of

pear
Figure 3-4 shows the ComponentWorks Motor control file selected in t
Object Browser. The Classes list shows all controls and associated ob
types. Each time you select an item from the Classes list in the Objec
Browser, the Members list on the right side displays the properties,
methods, and events for the selected object or class.

Figure 3-4. Viewing CWMotor in the Object Browser

When you select an item in the Members list, the prototype and descrip
of the selected property, method, or function are displayed at the bottom
the Object Browser dialog box. In Figure 3-4, the CWMotor control is
selected from the Classes list. For this control, the SetBuiltinStyle
method is selected and the prototype and description of the method ap
in the dialog box. The prototype of a method or function lists all
parameters, required and optional.
© National Instruments Corporation 3-7 ComponentWorks Automation Symbols

Chapter 3 Building ComponentWorks Applications with Visual Basic

ows

s
ou
s.

When you select a property of a control or object in the Members list
which is an object in itself, the description of the property includes a
reference to the object type of the property. For example, Figure 3-5 sh
the CWVessel control selected in the Classes list and its Axis property
selected in the Members list.

Figure 3-5. Viewing CWVessel in the Object Browser

The Axis object on the CWVessel control is a separate object, so the
description at the bottom of the dialog window lists the Axis property a
CWAxis. CWAxis is the type name of the Axes collection object, and y
can select CWAxis in the Classes list to see its properties and method
Move from one level of the object hierarchy to the next level using the
Object Browser to explore the structure of different controls.

The question mark (?) button at the top of the Object Browser opens the
help file to a description of the currently selected item. To find more
information about a specific control, select that control in the window
and press the ? button.
ComponentWorks Automation Symbols 3-8 © National Instruments Corporation

Chapter 3 Building ComponentWorks Applications with Visual Basic

an
n to
,

aste

erty
ate

 As
mes

orm
dd a
 as

ies
Pasting Code into Your Program
If you open the Object Browser from the Visual Basic code editor, you c
copy the name or prototype of a selected property, method, or functio
the clipboard and then paste it into your program. To perform this task
select the desired Member item in the Object Browser. Press the Copy to
Clipboard button at the top of the Object Browser or highlight the
prototype at the bottom and press <Ctrl-C> to copy it to the clipboard. P
it into your code window by selecting Edit»Paste or pressing <Ctrl-V>.

Use this method repeatedly to build a more complex reference to a prop
of a lower-level object in the object hierarchy. For example, you can cre
a reference to

CWVessel1.Axis.Ticks.Inside

by typing in the name of the control (CWVessel1) and using the Object
Browser to add each section of the property reference.

Adding Code Using Visual Basic Code Completion
Visual Basic 5 supports automatic code completion in the code editor.
you enter the name of a control, the code editor prompts you with the na
of all appropriate properties and methods. Try placing a control on the f
and then entering its name in the code editor. After typing the name, a
period as the delimiter to the property or method of the control. As soon
you type the period, Visual Basic displays a menu of available propert
and methods, as shown in Figure 3-6.

Figure 3-6. Visual Basic 5 Code Completion
© National Instruments Corporation 3-9 ComponentWorks Automation Symbols

Chapter 3 Building ComponentWorks Applications with Visual Basic

gh
red

er the
You can select from the list of properties and events by scrolling throu
the list and selecting one or by typing in the first few letters of the desi
item. Once you have selected the correct item, type the next logical
character such as a period, space, equal sign, or carriage return to ent
selected item in your code and continue editing the code.
ComponentWorks Automation Symbols 3-10 © National Instruments Corporation

© National Instruments Corporation 4-1 ComponentWorks Aut
4

ith

w to
ing

d)
s,
 in

 5

ols
 to

s

Building ComponentWorks
Applications with Visual C++

This chapter describes how you can use ComponentWorks controls w
Visual C++, explains how to insert the controls into the Visual C++
environment and create the necessary wrapper classes, shows you ho
create an application compatible with the ComponentWorks controls us
the Microsoft Foundation Classes Application Wizard (MFC AppWizar
and how to build your program using the ClassWizard with the control
and discusses how to perform these operations using ActiveX controls
general.

Note The descriptions and figures in this chapter apply specifically to the Visual C++
environment.

Developing Visual C++ Applications
The following procedure explains how you can start developing
Visual C++ applications with ComponentWorks.

1. Create a new workspace or project in Visual C++.

2. To create a project compatible with the ComponentWorks ActiveX
controls, use the Visual C++ MFC AppWizard to create a skeleton
project and program.

3. After building the skeleton project, add the ComponentWorks contr
to the controls toolbar. From the toolbar, you can add the controls
the application.

4. After adding a control to your application, configure its properties
using its property pages.

5. While developing your program code, use the control properties
and methods and create event handlers to process different event
generated by the control.

Create the necessary code for these different operations using the
ClassWizard in the Visual C++ environment.
omation Symbols

Chapter 4 Building ComponentWorks Applications with Visual C++

 a
ls.

e
ns
Creating Your Application
When developing new applications, use the MFC AppWizard to create
new project workspace so the project is compatible with ActiveX contro
The MFC AppWizard creates the project skeleton and adds the code
necessary to add ActiveX controls to your program.

1. Create a new project by selecting File»New. The New dialog box
opens (see Figure 4-1).

Figure 4-1. New Dialog Box

2. On the Projects tab, select MFC AppWizard (exe) and enter the
project name and the directory.

3. Press the OK button to setup your project.

Complete the next series of dialog windows in which the
MFC AppWizard prompts you for different project options. If you ar
a new Visual C++ or MFC AppWizard user, accept the default optio
unless otherwise stated in this documentation.

4. In the first step, select the type of application you want to build.
For this example, select a dialog-based application, as shown in
Figure 4-2, to make it easier to become familiar with the
ComponentWorks controls.
ComponentWorks Automation Symbols 4-2 © National Instruments Corporation

Chapter 4 Building ComponentWorks Applications with Visual C++

ed.
hich

u

e
s
es
Figure 4-2. MFC AppWizard—Step 1

5. Press the Next> button to continue.

6. Enable ActiveX controls support. If you select a Dialog based
application, step two of the MFC AppWizard enables ActiveX
Controls support by default.

7. Continue selecting desired options through the remainder of the
MFC AppWizard. When you finish the MFC AppWizard, it builds a
project and program skeleton according to the options you specifi
The skeleton includes several classes, resources, and files, all of w
can be accessed from the Visual C++ development environment.

8. Use the Workspace window, which you can select from the View
menu, to see the different components in your project.

Adding ComponentWorks Controls to the Visual C++ Controls Toolbar
Before building an application using the ComponentWorks controls, yo
must load the controls into the Controls toolbar in Visual C++ from the
Component Gallery in the Visual C++ environment. When you load th
controls using the Component Gallery, a set of C++ wrapper classes i
automatically generated in your project. You must have wrapper class
to work with the ComponentWorks controls.
© National Instruments Corporation 4-3 ComponentWorks Automation Symbols

Chapter 4 Building ComponentWorks Applications with Visual C++

n
en

s.

.

x.

e
g

s
 to
vior

y

 it

ired
 to

 the
The Controls toolbar is visible in the Visual C++ environment only whe
the Visual C++ dialog editor is active. Use the following procedure to op
the dialog editor.

1. Open the Workspace window by selecting View»Workspace.

2. Select the Resource View (second tab along the bottom of the
Workspace window).

3. Expand the resource tree and double click one of the Dialog entrie

4. If necessary, right click any toolbar and enable the Controls option

By adding controls to your project, you create the necessary wrapper
classes for the control in your project and add the control to the toolbo
Use the following procedure to add new controls to the toolbar.

1. Select Project»Add To Project»Components and Controls and,
in the following dialog, double click Registered ActiveX Controls.

2. Select the ComponentWorks controls and click the Insert button.

3. Press the OK button in the following dialog windows.

4. When you have inserted the controls, click Close in the Components
and Controls Gallery.

Building the User Interface Using ComponentWorks
After adding the controls to the Controls toolbar, use the controls in th
design of the application user interface. Place the controls on the dialo
form using the dialog editor. You can size and move individual control
in the form to customize the interface. Use the custom property pages
configure control representation on the user interface and control beha
at run time.

To add ComponentWorks controls to the form, open the dialog editor b
selecting the dialog form from the Resource View of the Workspace
window. If the Controls toolbar is not displayed in the dialog editor, open
by right clicking any existing toolbar and enabling the Controls option.

To place a ComponentWorks control on the dialog form, select the des
control in the Controls toolbar and click and drag the mouse on the form
create the control. After placing the controls, move and resize them on
form as needed.
ComponentWorks Automation Symbols 4-4 © National Instruments Corporation

Chapter 4 Building ComponentWorks Applications with Visual C++

he
ng

s

ds,
C++.

al
ber

ject.

k

ble

e,

 and
After you add a ComponentWorks control to a dialog form, configure t
default properties of the control by right clicking the control and selecti
Properties to display its custom property pages. Figure 4-3 shows the
CWPipe control property pages.

Figure 4-3. CWPipe Control Property Pages

Notice how different properties affect the control. A separate window
displays a sample copy of the control that reflects the property change
as you make them in the property pages.

Programming with the ComponentWorks Controls
To program with ComponentWorks controls, use the properties, metho
and events of the controls as defined by the wrapper classes in Visual

Before you can use the properties or methods of a control in your Visu
C++ program, assign a member variable name to the control. This mem
variable becomes a variable of the application dialog class in your pro

To create a member variable for a control on the dialog form, right clic
the control and select ClassWizard. In the MFC Class Wizard window,
activate the Member Variables tab, as shown in Figure 4-4.

Select the new control in the Control IDs field and press the Add Variable
button. In the dialog window that appears, complete the member varia
name and press OK . Most member variable names start with m_, and you
should adhere to this convention. After you create the member variabl
use it to access a control from your source code. Figure 4-4 shows the
MFC Class Wizard after member variables have been added for a graph
analog input control.
© National Instruments Corporation 4-5 ComponentWorks Automation Symbols

Chapter 4 Building ComponentWorks Applications with Visual C++

r
ach

 the
o
nt

ns)
Figure 4-4. MFC ClassWizard—Member Variable Tab

Using Properties
Unlike Visual Basic, you do not read or set the properties of
ComponentWorks controls directly in Visual C++. Instead, the wrappe
class of each control contains functions to read and write the value of e
property. These functions are named starting with either Get or Set
followed by the name of the property.

For example, to set the Value property of a motor, use the SetValue
function of the wrapper class for the Motor control. In the source code,
function call is preceded by the member variable name of the control t
which it applies. Some values passed to properties need to be of varia
type. Convert the value passed to the property to a variant using
COleVariant() .

m_CWMotor1.SetValue(COleVariant(1.0));

You can view the names of all the property functions (and other functio
for a given control in the ClassView of the Workspace window. In the
Workspace window, select ClassView and then the control for which you
want to view property functions and methods. Figure 4-5 shows the
ComponentWorks Automation Symbols 4-6 © National Instruments Corporation

Chapter 4 Building ComponentWorks Applications with Visual C++

ated
ect.

ect,
trol.
r file
de
functions for the Pipe object as listed in the Workspace. These are cre
automatically when you add a control to the Controls toolbar in you proj

Figure 4-5. Viewing Property Functions and Methods in the Workspace Window

If you need to access a property of a control that is in itself another obj
use the appropriate property function to return the sub-object of the con
Make a call to access the property of the sub-object. Include the heade
in your program for any new objects. For example, use the following co
to set the maximum of the axis for a vessel.

#include "cwaxis.h"

void CTestDlg::OnButton1()

{

CCWAxis axis;

axis = m_CWVessel1.GetAxis();

axis.SetMaximum(COleVariant(100.0));

}

© National Instruments Corporation 4-7 ComponentWorks Automation Symbols

Chapter 4 Building ComponentWorks Applications with Visual C++

file
sing

 call
 pass
, use

 such
rt

s.
You can chain this operation into one function call without having to
declare another variable.

#include "cwaxis.h"

void CTestDlg::OnButton1()

{

m_CWVessel1.GetAxis().SetMaximum(COleVariant(100.0));

}

If you need to access an object in a collection property, use the Item
method with the index of the object. Remember to include the header
for the collection object. For example, you can add a flange to a pipe u
the following code.

#include "cwpipeconnections.h"

#include "cwpipeconnection.h"

void CTestDlg::OnButton1()

{

m_CWPipe1.GetConnections().Item(COleVariant(1.0)).

SetFlange(TRUE);

}

Using Methods
Use the control wrapper classes to extract all methods of the control. To
a method, append the method name to the member variable name and
the appropriate parameters. If the method does not require parameters
a pair of empty parentheses.

Most methods take some parameters as variants. You must convert any
parameter to a variant if you have not already done so. You can conve
most scalar values to variants with COleVariant() , as in the following
example.

#include "cwaxis.h"

void CTestDlg::OnButton1()

{

m_CWVessel1.GetAxis().SetMinMax(COleVariant(0.0),

COleVariant(1.0));

}

Note Consult Visual C++ documentation for more information about variant data type
ComponentWorks Automation Symbols 4-8 © National Instruments Corporation

Chapter 4 Building ComponentWorks Applications with Visual C++

ler
 run
sing

age.

s
cted

the
 can

 the

e
Using Events
After placing a control on your form, you can start defining event hand
functions for the control in your code. Events generate automatically at
time when different controls respond to conditions, such as a user pres
a button on the form or the image acquisition process acquiring an im

Use the following procedure to create an event handler.

1. Right click a control and select ClassWizard.

2. Select the Message Maps tab and the desired control in the Object ID
field. The Messages field displays the available events for the sele
control. (See Figure 4-6.)

3. Select the event and press the Add Function button to add the event
handler to your code.

4. To switch directly to the source code for the event handler, press
Edit Code button. The cursor appears in the event handler, and you
add the functions to call when the event occurs. You can use the Edit
Code button at any time by opening the class wizard and selecting
event for the specific control.

The following code is an example of an event handler generated for th
OnPointerValueCommitted event of a knob.

// cwvariant.h and CCWVariant class are included with the

// ComponentWorks examples.

#include "cwvariant.h"

void CTest2Dlg::OnPointerValueCommittedCwvessel1

(long Pointer, VARIANT FAR* Value)

{

// Create CCWVariant and a double and assign the

// returned value to the double.

CCWVariant vValue(*Value);

double dValue;

vValue.GetValue(VT_R8, &dValue);

// If the tank value is greater than five,

// turn on the pump.

if (dValue > 5.0)

m_CWPump1.SetValue(TRUE);

else

m_CWPump1.SetValue(FALSE);

}

© National Instruments Corporation 4-9 ComponentWorks Automation Symbols

Chapter 4 Building ComponentWorks Applications with Visual C++
Figure 4-6. Event Handler
ComponentWorks Automation Symbols 4-10 © National Instruments Corporation

© National Instruments Corporation 5-1 ComponentWorks Aut
5

ith
ies,
g
fy

f
ith

t

ent

Building ComponentWorks
Applications with Delphi

This chapter describes how you can use ComponentWorks controls w
Delphi; insert the controls into the Delphi environment, set their propert
and use their methods and events; and perform these operations usin
ActiveX controls. This chapter also outlines Delphi features that simpli
working with ActiveX controls.

Note The descriptions and figures in this chapter apply specifically to the Delphi 3
environment. If you have the original release of Delphi 3, you might experience
significant problems with ActiveX controls, but Borland offers a newer version o
Delphi that corrects most of these problems. Before using ComponentWorks w
Delphi 3, contact Borland to receive the Delphi 3 patch or a newer version.

Running Delphi Examples
To run the Delphi examples installed with ComponentWorks, you mus
import the controls into the Delphi environment. Refer to the Loading
ComponentWorks Controls into the Component Palette section for more
information about loading the controls.

Developing Delphi Applications
You start developing applications in Delphi using a form. A form is
a window or area on the screen on which you can place controls and
indicators to create the user interface for your programs. The Compon
palette in Delphi contains all of the controls available for building
applications. After placing each control on the form, configure the
properties of the control with the default and custom property pages.
Each control you place on a form has associated code (event handler
routines) in the Delphi program that automatically executes when the
user operates the control or the control generates an event.
omation Symbols

Chapter 5 Building ComponentWorks Applications with Delphi

hi
ause
hen
files)
u use

our

t
Loading ComponentWorks Controls into the Component Palette
Before you can use the ComponentWorks controls in your Delphi
applications, you must add them to the Component palette in the Delp
environment. You only need to add the controls to the palette once bec
the controls remain in the Component palette until you remove them. W
you add controls to the palette, you create Pascal import units (header
that declare the properties, methods, and events of a control. When yo
a control on a form, a reference to the corresponding import unit is
automatically added to the program.

Note Before adding a new control to the Component palette, make sure to save all y
work in Delphi, including files and projects. After loading the controls, Delphi
closes any open projects and files to complete the loading process.

Use the following procedure to add ActiveX controls to the Componen
palette.

1. Select Component»Import ActiveX Control in the Delphi
environment. The Import ActiveX Control window displays a list
of currently registered controls.

Figure 5-1. Delphi Import ActiveX Control Dialog Box
ComponentWorks Automation Symbols 5-2 © National Instruments Corporation

Chapter 5 Building ComponentWorks Applications with Delphi

s
nd

nts

e
 the
 the

e by
2. Select National Instruments CW Automation Symbols to add
the controls to the Component palette.

3. After selecting the control group, click Install .

Delphi generates a Pascal import unit file for the selected .OCX file,
which is stored in the Delphi \Imports directory. If you have installed
the same .OCX file previously, Delphi prompts you to overwrite the
existing import unit file.

4. In the Install dialog box, click OK to add the controls to the Delphi
user’s components package.

5. In the following dialog, click Yes to rebuild the user’s components
package with the added controls. Another dialog box acknowledge
the changes you have made to the user’s components package, a
the package editor displays the components currently installed.

At this point, you can add additional ActiveX controls with the
following procedure.

a. Press Add button.

b. Select the Import ActiveX tab.

c. Select the ActiveX control you want to add.

d. Click OK .

e. After adding the ActiveX controls, compile the user’s compone
package.

If your control does not appear in the list of registered controls, click th
Add button. To register a control with the operating system and add it to
list of registered controls, browse and select the OCX file that contains
control. Most OCX files reside in the \Windows\System(32) directory.

New controls are added to the ActiveX tab in the Components palette. You
can rearrange the controls or add a new tab to the Components palett
right clicking the palette and selecting Properties.
© National Instruments Corporation 5-3 ComponentWorks Automation Symbols

Chapter 5 Building ComponentWorks Applications with Delphi

 use
rent
he
.

ove
ou

g the
Building the User Interface
After you add the ComponentWorks controls to the Component palette,
them to create the user interface. Open a new project, and place diffe
controls on the form. After placing the controls on the form, configure t
default property values through the stock and custom property sheets

Placing Controls
To place a control on the form, select the control from the Component
palette and click and drag the mouse on the form. Use the mouse to m
and resize controls to customize the interface, as in Figure 5-2. After y
place the controls, you can change the default property values by usin
default property sheet (Object Inspector) and custom property sheets.

Figure 5-2. ComponentWorks Controls on a Delphi Form
ComponentWorks Automation Symbols 5-4 © National Instruments Corporation

Chapter 5 Building ComponentWorks Applications with Delphi

l or

 the
Using Property Pages
Set property values such as Name in the Object Inspector of Delphi. To
open the Object Inspector, select View»Object Inspector or press <F11>.
Under the Properties tab of the Object Inspector, you can set different
properties of the selected control.

Figure 5-3. Delphi Object Inspector

To open the custom property pages of a control, double click the contro
right click the control and select Properties. You can edit most control
properties from the custom property pages. The following figure shows
ComponentWorks Pipe control property page.

Figure 5-4. ComponentWorks Pipe Control Property Pages
© National Instruments Corporation 5-5 ComponentWorks Automation Symbols

Chapter 5 Building ComponentWorks Applications with Delphi

)
 by
 in
ted by

g
y

nd
rol.

he

ce.
Programming with ComponentWorks
The code for each form in Delphi is listed in the Associated Unit (code
window. You can toggle between the form and Associated Unit window
pressing <F12>. After placing controls on the form, use their methods
your code and create event handler routines to process events genera
the controls at run time.

Using Your Program to Edit Properties
You can set or read control properties programmatically by referencin
the name of the control with the name of the property, as you would an
variable name in Delphi. The name of the control is set in the Object
Inspector.

The syntax for setting the Value property in Delphi is

<name>.<property> := new_value;

For example, you can change the Value property of a Motor control to off
using the following line of code, where CWMotor1 is the default name of
the Motor control.

CWMotor1.Value := False;

A property can be an object itself that has its own properties. To set
properties in this case, combine the name of the control, sub-object, a
property. For example, consider the following code for the Vessel cont
Axis is both a property of the Vessel control and an object itself. Maximum
is a property of the Axis object. As an object of the Vessel control, Axis
itself has several additional properties.

CWVessel1.Axis.Maximum := 100;

You can retrieve the value of a control property from your program in t
same way. For example, you can print the Value property of a valve or
display the minimum of the vessel axis in a text box on the user interfa

Edit1.Text := CWVessel1.Axis.Minimum;

To use the properties or methods of an object in a collection, use the Item
method to extract the object from the collection. Once you extract the
object, use its properties and methods as you usually would.

CWVessel1.Pointers.Item(2).Value := 5.0;
ComponentWorks Automation Symbols 5-6 © National Instruments Corporation

Chapter 5 Building ComponentWorks Applications with Delphi

 call
od

ple
,
red

cess
re

ate
e

ate
xt
ode

the
Using Methods
Each control has defined methods that you can use in your program. To
a method in your program, use the control name followed by the meth
name and parameters.

In most cases, parameters passed to a method are of type variant. Sim
scalar values can be automatically converted to variants and, therefore
might be passed to methods. Arrays, however, must be explicitly decla
as variant arrays.

Using Events
Use event handler routines in your source code to respond to and pro
events generated by the different ComponentWorks controls. Events a
generated by user interaction with an object in response to internal
conditions (for example, completed acquisition or an error). You can cre
a skeleton for an event handler routine using the Object Inspector in th
Delphi environment.

To open the Object Inspector, press <F11> or select View»Object
Inspector. In the Object Inspector, select the Events tab. This tab, as shown
in the following figure, lists all the events for the selected control. To cre
a skeleton function in your code window, double click the empty field ne
to the event name. Delphi generates the event handler routine in the c
window using the default name for the event handler.

Figure 5-5. Delphi Object Inspector Events Tab

To specify your own event handler name, click in the empty field in the
Object Inspector next to the event, and enter the function name. After
event handler function is created, insert the code in the event handler.
© National Instruments Corporation 5-7 ComponentWorks Automation Symbols

© National Instruments Corporation 6-1 ComponentWorks Aut
6

tion
st
nd

e
and
nal
Using the Pipe Control

This chapter describes how to use the ComponentWorks Pipe automa
symbol to customize your application interface. It also outlines the mo
commonly used properties, methods, and events for the Pipe control a
how you can use them in typical applications.

Pipe Control Overview
The Pipe control is an ActiveX control you can use to implement a wid
range of pipe styles. You can use the Pipe control to build pipe, wire,
line representations including flanges, multiple connections, and diago
components.
omation Symbols

Chapter 6 Using the Pipe Control

d its
e

u,

u
n

hen
ult.

n.

ges.
Using the Pipe Design Menu
After you place a Pipe control on a form, use the Pipe Design menu an
property pages to configure and customize the control. To use the Pip
Design menu in the design mode, right click the control and choose Edit .
In the Edit mode, you can right click the control to use the Design men
shown in the following illustration.

Figure 6-1. Pipe Design Menu

Note If your development environment does not support the Edit option, you can use
the Design menu in the Preview window. The Preview window opens when yo
invoke the property pages. Right click the Preview window to display the Desig
menu.

The Pipe control contains a set of CWPipeConnection sub-objects. W
you place the Pipe control on a form, it has two pipe connections by defa
Select Add Connection from the Design menu to add another connectio
To delete a connection, right click the connection and choose Delete
Connection.

Pipe connections with angles of multiples of 90 degrees can have flan
To add a flange, right click the pipe connection and choose the Toggle
Flange menu item.

Pipe controls are 3D by default. You can change them to 2D pipes by
unselecting the 3D menu item in the Design menu.
ComponentWorks Automation Symbols 6-2 © National Instruments Corporation

Chapter 6 Using the Pipe Control

ee
e
Customizing the Pipe
You can customize a pipe in several ways. You can select from the
predefined styles on the Style property page, shown in the following
illustration, or you can customize each pipe connection individually.

Figure 6-2. Style Property Page for a Pipe Control

You can select from the following predefined styles in the Pipe Style
property page:

• cwPipeStyleStraight

• cwPipeStyleElbow

• cwPipeStyleTShaped

• cwPipeStyleCross

• cwPipeStyleReducer

• cwPipeStyleFunnel

Use the rotate buttons to change the orientation of the pipe in 45 degr
increments. Use the Flanges checkbox to add or remove flanges from th
pipe connections.
© National Instruments Corporation 6-3 ComponentWorks Automation Symbols

Chapter 6 Using the Pipe Control

s of
iew
it to
the
n in
e

pipe
are
You also can customize the pipe by changing its position and the angle
the pipe connections when the control is in the Edit mode or in the Prev
window. To change the pipe angle, click the pipe connection and drag
a new angle. The angles change in 45 degree increments. To change
position of a pipe, place your cursor on the center of the pipe, as show
the following illustration. Select and drag the blinking circle to move th
pipe in the control area.

Figure 6-3. Changing the Position of a Pipe Control

You can adjust the size of the pipe by changing the fill diameter and the
thickness on the Pipe property page. Fill diameter and pipe thickness
specified in pixel units.

Figure 6-4. Pipe Thickness and Fill Diameter of a Pipe Control

Fill
Diameter

Pipe
Thickness
ComponentWorks Automation Symbols 6-4 © National Instruments Corporation

Chapter 6 Using the Pipe Control

 for
Grid Settings
You can align pipes to create a network of pipes by completing the
following steps:

1. In your programming environment, align the form to grid. For
example, complete the following steps to align the form to grid in
Visual Basic.

a. Select Tools»Options.

b. Select the General tab from the Options dialog box.

c. Enter Width and Height for the grid units.

d. Select the Align to Grid checkbox.

2. Align the Pipe control to grid. Click the Align to Grid checkbox on
the Grids property page, shown in Figure 6-5.

Figure 6-5. Grid Property Page

3. Select the measurement units for your form from the Units pulldown
menu on the Grid property page.

4. Enter Width and Height for the grid on the Grid property page. The
grid settings for the control should match the grid settings you set
the programming environment.
© National Instruments Corporation 6-5 ComponentWorks Automation Symbols

Chapter 6 Using the Pipe Control

orm
le, if

gh,

r
.

on
 Edit

n

.

The grid settings are global for the Pipe control, so every pipe on the f
has the same grid properties and can align with each other. For examp
the grid settings in Visual Basic are 120 points wide and 120 points hi
you can set the grid units on the pipe to cwGridUnitsPoints and then set
gridX and gridY to 120. Now you can move the pipe within the control o
move the Pipe control to connect to the other pipe controls on the form

CWPipeConnection
Each pipe connection on a control corresponds to a CWPipeConnecti
object. To change the angle of a pipe connection, select and drag it in
mode or in the Preview window.

Use the Design menu in Edit mode to add or remove a flange. You ca
change the flange width and extents in pixel units on the Pipe property
page. The following illustration shows a pipe with a flange on one end

Figure 6-6. Flange Width and Extent

Flange
Width

Flange
Extent
ComponentWorks Automation Symbols 6-6 © National Instruments Corporation

Chapter 6 Using the Pipe Control

he

ally

 the
.

 of

fer
You can create pipe styles like a funnel or a reducer by manipulating t
End Diameter property on the Connections property page.

Figure 6-7. End Diameter of a Pipe Control

Events
The main event on the Pipe control is FlowStateChanged . It is generated
when the state of the control is changed from the program. This norm
is used to update values in your application that depend on the flowing
value of the pipe. For example, if you connect a pipe to a pump and if
pump must be started when the pipe is flowing, use the following code
Private Sub CWPipe1_FlowStateChanged(ByVal Value As

Boolean)

 CWPump1.Value = Value

End Sub

The Value parameter returned to the event handler specifies the value
theFlowing property for CWPipe1.

For more information on individual properties, methods, and events, re
to the ComponentWorks Automation Symbols Online Reference, which you
can open from the Windows Start menu (Programs»National
Instruments ComponentWorks» Automation Symbols»
ComponentWorks Automation Symbols Reference).

End Diameter
© National Instruments Corporation 6-7 ComponentWorks Automation Symbols

© National Instruments Corporation 7-1 ComponentWorks Aut
7

,

the

pter
ols
s in

es
the

this
e

rols

ges,
s of
eate
es.
Using the Pump, Valve,
and Motor Controls

This chapter describes how to use the ComponentWorks Pump, Valve
and Motor controls to customize your application interface.

This chapter also includes a tutorial exercise that gives step-by-step
instructions on using the Pump and Valve controls in programs. While
code listed with the tutorial uses Visual Basic syntax, the steps can be
applied to any programming environment. Consult the appropriate cha
in this manual for information about using the ComponentWorks contr
in another environment. The software includes solutions for the tutorial
Visual Basic, Visual C++, and Delphi.

Overview
You can use the Pump, Valve, and Motor controls to control Boolean
information from your application or to indicate the state of such devic
on the factory floor. Each control offers several different styles. Using
Mode property you can set the controls, regardless of style, to act as a
command button that switches state only while pressed. You can use
mode to initiate action in your program without changing the state of th
symbol permanently.

The most commonly used property on the Pump, Valve, and Motor cont
is the Value property. You can use the Value property to set the state of
the control, as shown in the following example.
CWPump1.Value = False

If (CWMotor1.Value = True) Then...

Other properties such as OnColor , OffColor , OnText , and OffText are
usually set in the property pages during development. In the property pa
you also can select your own bitmaps to represent the on and off state
the button to create a custom Boolean control. For example, you can cr
representations of chillers or heaters to depict other industrial process
omation Symbols

Chapter 7 Using the Pump, Valve, and Motor Controls

ode

an
ate
rol,

s so
ber
e
ut

ect

r

ep

ault

s

ion
Events
The most important event generated by the Pump, Valve, and Motor
controls is ValueChanged . This notifies the application that the control
value has changed. This event is generated if the control is in switch m
(Switch when pressed) or in command mode (Switch until released).
Private Sub CWValve1_ValueChanged(ByVal Value As

Boolean)

'insert code to run when valve is pressed

End Sub

Tutorial: Pipe, Pump, and Valve Controls
This tutorial shows how to use the Pipe, Pump, and Valve controls in
application. The tutorial goes through all the steps necessary to integr
the controls with the program. For more information about the Pipe cont
refer to Chapter 6, Using the Pipe Control.

The tutorial uses Visual Basic syntax, but is explained in general term
you can follow it in any compatible programming environment. Remem
to adjust any code to your specific programming language. Consult th
chapter specific to your programming environment for information abo
implementing any particular step.

Designing the Form
1. Open a new project and form. If you are working in Visual C++, sel

a dialog based application and name your project SimplePipe .

2. Load the ComponentWorks Automation Symbols controls into you
programming environment.

3. From the toolbox or toolbar, place a CWPipe control on the form. Ke
its default name, CWPipe1. Modify the grid settings if needed. Refer
the Grid Settings section of Chapter 6, Using the Pipe Control, for
information about how to modify the grid settings.

4. Place a CWPump control on the form. Keep its default name,
CWPump1. Keep its default property values.

5. Place a CWValve control at the other end of the pipe. Keep its def
name, CWValve1. Open the property page and choose the Valve 4
style. Flip the valve vertically by pressing the Flip Vertical button.

6. Place another CWPipe control near the valve on the form. Keep it
default name, CWPipe2. Drag the connections to make a 90 degree
bend as shown in the following illustration. Open the Pipe Connect
ComponentWorks Automation Symbols 7-2 © National Instruments Corporation

Chapter 7 Using the Pump, Valve, and Motor Controls

e
e

e

 to
property page and select PipeConnection-2 from the Pipe
Connection listbox. Select the Flange checkbox and deselect the
Auto Select End Diameter checkbox. In the User field, set the end
diameter to 8.

Your form should look similar to the one shown below.

Developing the Program Code
This program illustrates how you can create dependencies between th
components in your control system. Turning on the pump should mak
fluid flow through the pipe. Turning on the valve should allow fluid to flow
to the second pipe provided the pump is running.

To have your program respond when the pump value changes, add th
ValueChanged event for the pump. Use the Value property to set the
current value of the controls.

1. Create a skeleton event handler for the ValueChanged event of
CWPump1.

2. Add the following code inside the event handler routine. If you are
working in Visual C++, first add a member variable for each control
the application dialog class.
CWPipe1.Flowing = CWPump1.Value

3. Create a skeleton event handler for the ValueChanged event of
CWValve1. Add the following code to the CWValve1_ValueChanged
event routine.
CWPipe2.Flowing = CWPipe1.Value and CWValve1.Value

This ensures that CWPipe2 is flowing only if CWPipe1 is flowing and
CWValve1 is open.
© National Instruments Corporation 7-3 ComponentWorks Automation Symbols

Chapter 7 Using the Pump, Valve, and Motor Controls

olor

lue

sed
4. Create the skeleton event for CWPipe1_FlowStateChanged event of
CWPipe1. Add the following code at the end of the
CWPipe1_FlowStateChanged routine.
CWValve1_ValueChanged CWValve1.Value

5. Save the project and associated files as SimplePipe .

Testing Your Program
Run the program. Notice that the first pipe changes its color to the flow
color when you turn on the pump, and the second pipe also changes c
when the valve is open.

The program calls the CWPump1_ValueChanged function and updates
CWPipe1. Because the pipe control has its own FlowStateChanged
routine, it checks the value of the valve. Finally, when you change the va
of the valve, its own ValueChanged routine updates the value of the
second pipe.

To call the event handler routines only when the mouse button is relea
on the new selected value, use the MouseUp event instead of
ValueChanged .
ComponentWorks Automation Symbols 7-4 © National Instruments Corporation

© National Instruments Corporation 8-1 ComponentWorks Aut
8

ol
r
 the

ted

in

s
 to

Using the Vessel Control

This chapter describes how to use the ComponentWorks Vessel contr
to customize your application interface to suit your needs. This chapte
outlines the most commonly used properties, methods, and events for
Vessel control and how they are applied in typical applications.

This chapter also includes a tutorial exercise that gives step-by-step
instructions on using the Vessel control in programs. While the code lis
with the tutorial uses Visual Basic syntax, the steps can be applied to
any programming environment. Consult the appropriate chapter in this
manual for information about using the ComponentWorks controls in
another environment. The software includes solutions for the tutorials
Visual Basic, Visual C++, and Delphi.

Overview
The Vessel control represents different types of linear displays, such a
thermometers and tank displays. The purpose of the Vessel control is
allow the user to input or output (display) individual or multiple scalar
values. A Vessel control can have multiple pointers, with each pointer
representing one scalar value.
omation Symbols

Chapter 8 Using the Vessel Control

,

use
ne

s
The Vessel control consists of a hierarchy of objects for simplified use
as illustrated in the following diagram.

Figure 8-1. Vessel Control Hierarchy of Objects

Vessel Object
The Vessel object maintains the basic attributes of the control such as
background color and the caption. Its most important property is the Value
property, which contains the value of the currently active pointer. Beca
a control can have more than one pointer, it also contains more than o
value (stored in each Pointer object). The Value property of the Vessel
control is a copy of the value of the active pointer. The active pointer i
selected either by using the ActivePointer property on the control or by
using the mouse. You access the Value property using the following code.

CWVessel1.Value = 5.0

x = CWVessel1.Value

Vessel Control
Properties such as

Color, Font

Axis Object
Properties such as

AutoScale, Maximum

Pointer Object
Properties such as
Color, PointerStyle

Labels Object
Properties such as

Left, Color

Ticks Object
Properties such as
Inside, Major Ticks

Statistics Object
Properties such as

 Maximum

Value Pairs
Collection

Property: Count

Value Pair Object
Properties:

Name, Value

Pointers
Collection

Property: Count
ComponentWorks Automation Symbols 8-2 © National Instruments Corporation

Chapter 8 Using the Vessel Control

ter

ne

re
d

r is

 the

 and
ing
Pointers Collection
The Pointers collection of the Vessel object contains the individual Poin
objects of the control. It has one read-only property, Count , which returns
the number of Pointer objects in the collection.

NumPointers = CWVessel1.Pointers.Count

Like all collections, the Pointers collection also has an Item method that
you use to access any particular pointer in the collection. To retrieve a
pointer, call the Item method and specify the (one-based) index of the
pointer in the collection.

CWVessel1.Pointers.Item(2)

Each pointer also has a name property, so you can retrieve individual
pointers using their name instead of their index.

CWVessel1.Pointers.Item("BoilerPressure")

Pointer Object
The Pointer object is stored in the Pointers collection and represents o
value displayed on the Vessel control. It contains properties such as Style
and FillStyle that affect the display of the pointer. These properties a
usually set through the property pages at design time and not modifie
during program execution. Each pointer has a Value property containing
the value of the pointer that is used to read or set its value if the pointe
not currently active.

MaxLimit = CWVessel1.Pointers.Item(3).Value

CWVessel1.Pointers.Item("BoilerLevel").Value =

AcquiredPressure

Axis Object
The Axis object contains the information about the axis scale used on
Vessel control. The Axis object has several properties such as AutoScale ,
Maximum, and Minimum that can be set and read directly.

CWVessel1.Axis.AutoScale = True

MaxValue = CWVessel1.Axis.Maximum

It also contains three other objects: the Ticks object, the Labels object,
the ValuePairs collection. These sub-objects are described in the follow
sections.
© National Instruments Corporation 8-3 ComponentWorks Automation Symbols

Chapter 8 Using the Vessel Control

is.
tick
lar

e the
 to
r of

ints
iner

lue

ally

the
The Axis object contains a method SetMinMax that lets you specify both
a new minimum and maximum for the axis in one function call.

CWVessel1.Axis.SetMinMax newMin, newMax

Ticks and Labels Objects
Use the Ticks object to specify how tick marks are displayed on the ax
Properties include the spacing of the ticks as well as major and minor
selection. The Ticks object also controls any grid displayed for a particu
axis on the vessel. Usually the Ticks properties are set at design time
though the property pages. If necessary, they also can be changed at
run-time with simple property calls.

CWVessel1.Axis.Ticks.AutoDivision = False

CWVessel1.Axis.Ticks.MinorUnitsInterval = 2.0

The Labels object determines how the axis labels are drawn. Labels ar
numbers displayed next to the ticks. The Labels object has properties
select where the labels are drawn (right, left, above, below) and the colo
the labels.

CWVessel1.Axis.Labels.Color = vbBlue

ValuePairs Collection
Use the ValuePairs collection and ValuePair objects to mark specific po
on any axis with a custom label. The ValuePairs collection is the conta
for a varying number of ValuePair objects on an axis. It has a Count
property as well as several other properties that determine how the va
pairs are displayed on the axis.

NumMarkers = CWVessel1.Axis.ValuePairs.Count

CWVessel1.Axis.ValuePairs.LabelType = cwVPLabelName

The ValuePairs collection has an Item method to access any specific
ValuePair in the collection as well as several other methods to dynamic
manipulate the collection (Add, Remove, RemoveAll). The RemoveAll
method deletes all objects in the collection while the Add and Remove
methods add or remove one value pair at a time. Specify the index of
value pair to be removed on the Remove method.

CWVessel1.Axis.ValuePairs.Item(2)

CWVessel1.Axis.ValuePairs.RemoveAll
ComponentWorks Automation Symbols 8-4 © National Instruments Corporation

Chapter 8 Using the Vessel Control

f a
rol

lid

e.

 the
nd

ically

ues
n

s

ither
s in
ple,

nize
ValuePair Object
The ValuePair object configures an individual value pair that consists o
Name and a Value property. Use value pairs on the axis of a Vessel cont
for custom ticks, labels, and grid lines. You can use value pairs on the
Vessel control to implement a Value Pairs Only control that limits the va
values of the control to the control’s value pairs. You can specify the Name
and Value properties of a value pair on the property pages or at runtim
For example, to create a new value pair and set its properties, use the
following code.

CWVessel1.Axis.ValuePairs.Add

n = CWVessel1.Axis.ValuePairs.Count

CWVessel1.Axis.ValuePairs.Item(n).Name = "Max"

CWVessel1.Axis.ValuePairs.Item(n).Value = 7.0

Statistics Object
The Statistics object provides access to the statistical values stored by
Vessel control. The three calculated statistics—minimum, maximum, a
mean—are updated each time a pointer value is changed programmat
or graphically. The Statistics object has a method Reset that allows you to
reset all its values. The minimum and maximum are calculated with val
collected since the last Reset , and the mean is the average of the last te
values.

AverageMeasurement = CWVessel1.Statistics.Mean

CWVessel1.Statistics.Reset

Using the property pages or the Pointer.Mode property, you can assign a
specific pointer on a control to continuously display any of the statistic
values.

Events
The main event on the Vessel control is PointerValueChanged . It is
generated when the value of a pointer on the control is changed from e
the user interface or the program. You can use events to update value
your application in response to changes on the user interface. For exam
to use a numeric edit box as a digital display for a vessel and synchro
the two controls, use the following event handler.

Private Sub CWVessel1_PointerValueChanged(ByVal Pointer

As Long, Value As Variant)

 Text1.Text = CWVessel1.Value

End Sub
© National Instruments Corporation 8-5 ComponentWorks Automation Symbols

Chapter 8 Using the Vessel Control

ex

s,

d

the
e. For
sing

o
m

ribed

ows
map.

e
The Pointer parameter returned to the event handler specifies the ind
of the pointer that has changed value.

For more information on the individual properties, methods, and event
refer to the ComponentWorks Automation Symbols Online Reference,
which you can open from the Windows Start menu (Programs»National
Instruments ComponentWorks» Automation Symbols»
ComponentWorks Automation Symbols Reference).

Image Object
The Vessel control has a collection of images. You can find the image
names listed on the Images property page.

Image objects can be captions, built-in images, or external bitmaps an
metafiles that are loaded into the object. You can set Image object
properties, such as color, blink interval, and visibility, during design on
Images property page. You also can access these properties at run tim
example, you can set the color of the mixer image in the vessel to blue u
the following code.

CWVessel1.Images("mixer").Color = vbBlue

Animation
Animation simulates movement by displaying a series of pictures or
frames. Unlike video, which takes continuous motion and divides it int
discrete frames, animation begins with independent pictures and puts the
together to create the illusion of continuous motion.

You can use the Image object to implement animated images, as desc
in the following procedure:

1. Create a bitmap with the frames of animation laid out as a table of r
and columns. You can use any graphics software to create your bit

2. Load the bitmap into the image by selecting the bitmap file from th
Images property page.

3. Set the Rows and Columns fields to match the number of rows and
columns in your graphic.

4. Select an animation speed from the Animate pull-down listbox.

Note The default mixer image is the only built-in image you can animate.
ComponentWorks Automation Symbols 8-6 © National Instruments Corporation

Chapter 8 Using the Vessel Control

ssel

e
 the

s so
er

e
ut

ect

r

.
For example, you can implement a custom, animated mixer for the Ve
control. Use the bitmap shown in Figure 8-2. The bitmap is located in
ComponentWorks\Tutorials-Automation\Images\mixer1.bmp .

Figure 8-2. Custom Mixer Bitmap

From the Image property page of your Vessel control, select Mixer from
the Images listbox. Import mixer1.bmp, and set Rows to 1 and Columns
to 2. Next, change the animation speed in the Animate pull-down listbox
to any of the preset speeds.

Tutorial: Vessel Control
This tutorial shows how to use the Vessel control in an application. Th
tutorial goes through all the steps necessary to integrate the control with
program.

The tutorial uses Visual Basic syntax, but is explained in general term
you can follow it in any compatible programming environment. Rememb
to adjust any code to your specific programming language. Consult th
chapter specific to your programming environment for information abo
implementing any particular step.

Designing the Form
1. Open a new project and form. If you are working in Visual C++, sel

a dialog based application and name your project SimpleVessel .

2. Load the ComponentWorks Automation Symbols controls into you
programming environment.

3. From the toolbox or toolbar, place a CWVessel control on the form
Keep its default name, CWVessel1 .
© National Instruments Corporation 8-7 ComponentWorks Automation Symbols

Chapter 8 Using the Vessel Control

 its

tion

e

4. Click the Toggle Mixer button on the Style property page of
CWVessel1 to add a mixer to the vessel. On the Numeric property
page, change the maximum value of scale to 100 .

5. Place a Visual Basic CommandButton control on the form. Change
name and caption to Mixer .

6. Place another CommandButton control. Change its name and cap
to Random.

Your form should look similar to the one shown below.

Developing the Program Code
This program illustrates how you can create dependencies between th
components in your control system. Clicking the Mixer button turns the
mixer on and off. The Random button creates a random value that
represents the level of the vessel. In real control systems, this value is
obtained from the actual level of the vessel in your system.
ComponentWorks Automation Symbols 8-8 © National Instruments Corporation

Chapter 8 Using the Vessel Control

 of

e of
.

To make your program respond when you press the buttons, add the Click
event for the buttons.

1. Create a skeleton event handler for the Click event of the Mixer and
Random buttons.

2. Add the following code inside the Mixer_Click event handler
routine. If you are working Visual C++, first add a member variable
for each control to the application dialog class.
If CWVessel1.Images("mixer").AnimateInterval =

cwSpeedOff Then
CWVessel1.Images("mixer").AnimateInterval =

cwSpeedFastest

Else
CWVessel1.Images("mixer").AnimateInterval =

cwSpeedOff

End If

3. Add the following code to the Random_Click event routine.
CWVessel1.Value = Rnd * 100

The code generates a random number and assigns it to the value
the vessel.

4. Save the project and associated files as SimpleVessel .

Testing Your Program
Run the program. The Mixer button starts and stops the mixer and the
Random button changes the level of the vessel.

In real factory automation programs, the state of the mixer and the valu
the vessel are set by communicating with devices on your factory floor
© National Instruments Corporation 8-9 ComponentWorks Automation Symbols

© National Instruments Corporation A-1 ComponentWorks Aut
A

.

ere
on
g
es

ine

l
d
Common Questions

This appendix contains a list of answers to frequently asked questions
It contains general ComponentWorks questions as well as specific
Automation Symbols and Visual Basic questions.

Installation and Getting Started
How do I run the installer? What do I do if the AutoRun screen does
not appear?

The ComponentWorks Automation Symbols CD contains a different
installer for each development system. You can start all installers from
the ComponentWorks Automation Symbols CD AutoRun screen.

The AutoRun screen appears automatically when you load the
ComponentWorks Automation Symbols CD in your computer. You also
can open the AutoRun screen by running the SETUP program in the root
directory of the CD.

Note You must run the SETUP program if you copied the installer to floppy disks for
installation on a system without a CD-ROM drive.

What does it mean when I place a ComponentWorks Automation
Symbols control on my form and get an error saying that I am not
licensed to use this control?

This error indicates that the ComponentWorks Automation Symbols w
not installed properly. Make sure to install ComponentWorks Automati
Symbols on your computer using your installation disks or CD. Copyin
the OCX file from another machine or sharing them over a network do
not work.

Make sure to close all other applications before running the
ComponentWorks Automation Symbols installer and restart your mach
after completing the installation. If you previously installed a demo or
evaluation version of ComponentWorks Automation Symbols, uninstal
that version first and restart your computer before installing the license
version of ComponentWorks Automation Symbols.
omation Symbols

Appendix A Common Questions

ols

o

tem
h

ur
ll all

r
How do I distribute an application using ComponentWorks
Automation Symbols?

To distribute an application using ComponentWorks Automation Symb
or any ActiveX controls, you need to distribute the OCX file, DLL files,
and supporting OCXs and DLLs referenced in the application. You als
need to distribute any support DLLs required by your specific
programming environment.

Any OCXs and OLE Automation DLLs (OLE Automation Servers)
distributed with an application need to be registered in the operating sys
on the target computer. Usually, you can do this with an installer, whic
you build with the Setup Wizard/Tool provided by your programming
environment. If your setup tool does not provide this functionality or if yo
environment does not include a setup tool, you need to manually insta
necessary files and register the OCX file using the REGSVR32.EXE utility
provided by Microsoft.

To install and manually register an OCX file, copy the file to the \System
(for Windows 95) or \System32 (for Windows NT) subdirectory of the
Windows directory on the target computer. Run the following:

regsvr32 c:\windows\system(32)\cwas.ocx

To unregister a control, use the following:

regsvr32 /u c:\windows\system(32)\cwas.ocx

If you distribute the ComponentWorks Automation Symbols OCXs,
you also need to make sure that all the necessary support DLLs are
installed on the target machine. All the necessary support DLLs for the
ComponentWorks Automation Symbols controls are located in the
\ComponentWorks\Setup\redist directory on the ComponentWorks
Automation Symbols CD.

Remember to include any files required by your programming
environment, such as run-time DLLs. Check the documentation of you
development environment for a list of required DLLs.
ComponentWorks Automation Symbols A-2 © National Instruments Corporation

Appendix A Common Questions

 to

ject.
 with

d

ult is
t the
Visual Basic
I do not see any new controls in my Visual Basic toolbox. How do I load
the ComponentWorks Automation Symbols controls into Visual Basic?

To load the ComponentWorks Automation Symbols controls in Visual
Basic, right click the toolbox and select Components (Custom Controls
in Visual Basic 4) from the pop-up menu. Select the controls you want
use from the list of registered controls. If necessary, click the Browse
button to select a new unregistered control file. The ComponentWorks
Automation Symbols controls are located in the \Windows\System
directory and start with CW. Select each of the controls and then click OK
to return to Visual Basic. The new controls are placed in the toolbox.

How can I have the ComponentWorks Automation Symbols controls
and libraries automatically loaded when I start Visual Basic?

In Visual Basic 5, you can have the ComponentWorks Automation
Symbols controls and libraries loaded by adding them to a template pro
To do this, create a new project, load the controls, and save the project
a descriptive name in the (VB)\Template\Projects directory. When
creating new projects, you have the option of including the
ComponentWorks Automation Symbols controls.

In Visual Basic 4, load the AUTO32LD project located in the Visual Basic
directory, add the ComponentWorks Automation Symbols controls, an
save the project.

What is the difference in Visual Basic between using Base 0 or Base 1
to declare arrays?

Visual Basic can use either zero-based or one-based arrays. The defa
Base 0. To change to the Base 1 option, use the following statement a
top of your code:

Option Base 1

You also can specify the exact range when declaring an array.

Dim voltBuffer(0 To 9) As Double

Dim voltBuffer(1 To 10) As Double

Dim voltBuffer(10 To 19) As Double
© National Instruments Corporation A-3 ComponentWorks Automation Symbols

Appendix A Common Questions

n
eb

age

e

asic

lue

eir
What manuals and additional information are available for
ComponentWorks Automation Symbols?

Refer to Chapter 2, Getting Started with the ComponentWorks Automatio
Symbols, for information sources, including the online reference and W
site.

Automation Symbols Controls
How do I set the default value for a Vessel, Pump, Valve, or Motor
control?

To set the default value for these controls, open the default property p
(<F4> in Visual Basic, <F11> in Delphi) and set the Value property.

In Visual C++, open the custom property pages and set the value. If th
control is a ValuePairs Only control, set the ValuePairIndex property to
the one-based index of the desired value pair.

How do I display a value on a Vessel control and read values back
from it? How do I read or set a Pump, Valve, or Motor?

To pass a value to or read a value from one of these controls in Visual B
and Borland Delphi, use their Value property. The Value property acts as
a variable in your program, except that the value of this variable is the va
of the control on the form.

' set the value of a Vessel to 5

CWVessel1.Value = 5

' read back the value from a Vessel

Dim ReadValue As double

ReadValue = CWVessel1.Value

Pump, Valve, and Motor controls work in the same way, except that th
values are Booleans.

' set a Pump

CWPump1.Value = True

' read a Motor

If CWMotor1.Value = True then

' insert code here

End If
ComponentWorks Automation Symbols A-4 © National Instruments Corporation

Appendix A Common Questions

 are

or
wing

of
 the
s

s,

e
n the

le

ck

In Visual C++, control properties are not read or set directly (like
variables). Instead, the wrapper class created for each control provide
functions to read and write the value of that property. These functions
named with either Get or Set followed by the name of the property.

For example, to set the Value property of a vessel, use the SetValue
function. In the C code, the function call is preceded by the member
variable name of the control to which it applies.

m_Vessel.SetValue(5);

To read the value of a control, use the GetValue function. You can use
theGetValue function to pass a value to another part of your program. F
example, to pass the value of a vessel to another function use the follo
line of code.

MyFunction(m_Slide.GetValue());

You can view the names of all the property functions in the ClassView
the Project Workspace in Visual C++. In the Project Workspace, select
ClassView and then the control/object to view its property functions (a
well as its methods).

How can I change the style of my controls programmatically?

The Automation Symbols controls each have a number of default style
which you can choose in the property pages of the control. In some
applications, you might want to switch the style of a control while the
program is running.

Use the SetBuiltinStyle method to change the style at run time to on
of the predefined styles. The different styles are defined as constants i
controls.

CWPipe1.SetBuiltinStyle cwPipeStyleStraight

CWVessel1.SetBuiltinStyle cwVesselStyleTank

CWPump1.SetBuiltinStyle cwPumpStyle5

You can use the ExportStyle and ImportStyle methods on all
Automation Symbols controls to save and load custom-defined styles.
To save a predefined style, configure a control and click the Export Sty
(floppy disk icon) button in the property pages of the control (or right cli
the control and select Export Style). Assign a file name for the new style.
Using ImportStyle , you can interactively or programmatically load the
settings from this file.
© National Instruments Corporation A-5 ComponentWorks Automation Symbols

Appendix A Common Questions

trol.

ject
e

in
irs.

ct
the

ject.
ame

ce.
n,

e
ons,

n.
How do I access or change a particular PipeConnection or ValuePair
on one of the controls?

Each of these objects is contained within a collection object on the con
A collection object is a special object on a control that is used to store
multiple objects of the same type. For example, a pipe can have many
different PipeConnections. Rather than linking each PipeConnection ob
directly to the pipe, one PipeConnections collection is linked to the pip
and it contains all the individual PipeConnection objects.

The name of the collection object is the name of the contained object
plural form. For example, the collection of ValuePair objects is ValuePa
The ValuePairs collection is part of the Axis object contained in the
Vessel control.

To access one of the objects in a collection, use the Item method of the
collection object. The Item method extracts a particular object in the
collection using a parameter, which is the one-based index of the obje
in the collection. For example, to access the first plot on a vessel, use
following code.

CWPipe1.PipeConections.Item(1)

This code segment refers to the first PipeConnection on a pipe as an ob
You can then access the properties of the plot object by appending the n
of the property. For example, to read the Flange property of the second
PipeConnection on a pipe, use the following code.

x = CWPipe1.PipeConnection.Item(2).Flange

The properties of individual objects are described in the online referen
Search for the corresponding object name, such as CWPipeConnectio
CWValuePair, and so on, to find the description. Each of the collection
objects also has a number of properties and methods, described in th
online reference under the collection name, such as CWPipeConnecti
CWValuePair, and so on.

Use the Count property to determine the number of objects in a collectio

NumConnections = CWPipe1.PipeConnections.Count
ComponentWorks Automation Symbols A-6 © National Instruments Corporation

Appendix A Common Questions

 and

s

the
ect
elect

ses

e

 For

nly
r
Use the Add, Remove, and RemoveAll methods to programmatically
change the number of objects in a collection (for example, you can add
delete axes, cursors, value pairs, and so on in your program). The Remove
method requires the index of the object you want to remove.

CWPipe1.PipeConnections.Add

CWVessel1.Axis.ValuePairs.Remove 3

CWPipe1.PipeConnections.RemoveAll

Remember that ValuePair objects are contained in the ValuePairs
collection, which itself is part of an Axis object. The following code show
you how to access value pairs.

CWVessel1.Axis.ValuePairs.Item(1).Name = "Maximum"

CWVessel1.Axis.ValuePairs.Item(1).Value = 7.5

How do I align Pipe controls with each other?

In order to easily align Pipe controls with each other, you must match
grid map of the pipe to the grid of the form. Changes in grid settings aff
all pipes in your process. Open the Grid property page for a pipe and s
Align to Grid . Specify Width and Height of the grid spacing in pixels or
points. Visual Basic uses points to specify its grid spacing, and Delphi u
pixels. Press the OK button to apply the changes.

How do I use the Images property?

The Vessel control has a parameterized property Images . It gives you a
CWImage object based on the parameter passed to it. For example th
following code animates the mixer image on the vessel.

CWVessel1.Images("mixer").AnimateInterval = cwSpeedFast

Open the images property page to see the images a control supports.
information on other CWImage properties, refer to the ComponentWorks
Automation Symbols Online Reference, which you can open from the
Windows Start menu (Programs»National Instruments
ComponentWorks» Automation Symbols»ComponentWorks
Automation Symbols Reference).

What error codes do the Automation Symbols controls generate?

The Automation Symbols controls do not generate error codes. The o
error codes you might encounter are the error codes generated by you
programming environment.
© National Instruments Corporation A-7 ComponentWorks Automation Symbols

© National Instruments Corporation B-1 ComponentWorks Aut
B

d
ou
g in

sary
 to
ter

tion

er
ure
. For

ided
ns,
Distribution and
Redistributable Files

This chapter contains information about ComponentWorks Automation
Symbols 1.0 redistributable files and distributing applications that use
ComponentWorks Automation Symbols controls.

Files
The files in the \Setup\redist directory of the ComponentWorks
Automation Symbols CD are necessary for distributing applications an
programs that use ComponentWorks Automation Symbols controls. Y
need to distribute only those files needed by the controls you are usin
your application.

Distribution
When installing an application using ComponentWorks Automation
Symbols controls on another computer, you also must install the neces
control files and supporting libraries on the target machine. In addition
installing the necessary OCX file on a target computer, you must regis
each of these files with the operating system. This allows your applica
to find the correct OCX file and create the controls.

If your application performs any I/O operations requiring separate driv
software, such as data acquisition or GPIB, you must install and config
the driver software and corresponding hardware on the target computer
more information, consult the hardware documentation for the specific
driver used.

When distributing applications with the ComponentWorks Automation
Symbols controls, do not violate the license agreement (section 5) prov
with the software. If you have any questions about the licensing conditio
contact National Instruments.
omation Symbols

Appendix B Distribution and Redistributable Files

 in
trols

file.

 to
ing

t
er

ld.
f

ion
sk
Automatic Installers
Many programming environments include some form of a setup or
distribution kit tool. This tool automatically creates an installer for your
application so that you can easily install it on another computer. To
function successfully, this tool must recognize which control files and
supporting libraries are required by your application and include these
the installer it creates. The resulting installer also must register the con
on the target machine.

Some of these tools, such as the Visual Basic 5 Setup Wizard, use
dependency files to determine which libraries are required by an OCX
The ComponentWorks Automation Symbols OCX file includes a
corresponding dependency file located in the \Windows\System
directory (\Windows\System32 for Windows NT) after you install the
ComponentWorks Automation Symbols software.

Some setup tools might not automatically recognize which files are
required by an application but provide an option to add additional files
the installer. In this case, verify that the necessary OCX file (correspond
to the controls used in your application) as well as all the DLL and TLB
files from the \redist directory are included. You also should verify tha
the resulting installer does not copy older versions of a file over a new
version on the target machine.

If your programming environment does not provide a tool or wizard for
building an installer, you may use third-party tools, such as InstallShie
Some programming environments provide simplified or trial versions o
third-party installer creation tools on their installation CDs.

Manual Installation
If your programming environment does not include a setup or distribut
kit tool, you must build your own installer and perform the installation ta
manually. To install your application on another computer, follow
these steps:

1. Copy the application executable to the target machine.

2. Copy the required ComponentWorks Automation Symbols OCX
file (corresponding to the controls used in your application) to
the System directory (\Windows\System for Windows 95 or
\Windows\System32 for Windows NT) on the target machine.
ComponentWorks Automation Symbols B-2 © National Instruments Corporation

Appendix B Distribution and Redistributable Files

 to

f the
 the

 file
ch

on.
the

nd
ls as
ny

ion

ase

3. Copy all DLL and TLB files in the \redist directory to the System
directory on the target machine.

4. Copy any other DLLs and support files required by your application
the System directory on the target machine.

Some of these files might already be installed on the target machine. I
file on the target machine has an earlier version number than the file in
\redist directory, copy the newer file to the target machine.

After copying the files to the target machine, you must register the OCX
with the operating system. To register an OCX file, you need a utility su
as REGSVR32.EXE. You must copy this utility to the target machine to
register the OCX file, but you can delete it after completing the installati
Use this utility to register the OCX file with the operating system, as in
following example.

regsvr32 c:\windows\system\cwas.ocx

ComponentWorks Automation Symbols Evaluation
Once the ComponentWorks Automation Symbols OCX file is installed a
registered on a target computer, your application can create the contro
necessary. You or your customer also can use the same OCX file in a
compatible development environment as an evaluation version of the
controls. If desired, you may distribute the ComponentWorks Automat
Symbols reference files (from the \redist directory) with your
application, which provide complete documentation of the
ComponentWorks Automation Symbols controls when used
in evaluation mode.

If you would like to use the ComponentWorks Automation Symbols
controls as a development tool on this target machine, you must purch
another ComponentWorks Automation Symbols development system.
Contact National Instruments to purchase additional copies of the
ComponentWorks Automation Symbols software.
© National Instruments Corporation B-3 ComponentWorks Automation Symbols

Appendix B Distribution and Redistributable Files

al

al
the
 the

e
s

you

you

n

h
Run-Time Licenses
For each copy of your ComponentWorks Automation Symbols-based
application that you distribute, you must have a valid run-time license.
A limited number of run-time licenses are provided with the
ComponentWorks Automation Symbols development systems. Nation
Instruments driver software also provides you with ComponentWorks
Automation Symbols run-time licenses. You can purchase additional
ComponentWorks Automation Symbols run-time licenses from Nation
Instruments. Consult the license agreement (section 5) provided with
software for more detailed information. If you have any questions about
licensing conditions, contact National Instruments.

Troubleshooting
Try the following suggestions if you encounter problems after installing
your application on another computer.

The application is not able to find an OCX file or is not able to create
a control.

• The control file or one of its supporting libraries is not copied on th
computer. Verify that the correct OCX file and its supporting librarie
are copied on the machine. If one control was built using another,
might need multiple OCX files for one control.

• The control is not properly registered on the computer. Make sure
run the registration utility and that it registers the control.

Controls in the application run in evaluation (demo) mode.

• The application does not contain the correct run-time license. Whe
developing your application, verify that the controls are running in
a fully licensed mode. Although most programming environments
include a run-time license for the controls in the executable, some
do not.

If you are developing an application in Visual C++ using SDI
(single document interface) or MDI (multiple document interface),
you must include the run-time license in the program code for eac
control you create. Consult the ComponentWorks Automation
Symbols documentation, National Instruments Knowledgebase
(www.natinst.com/support) or technical support if you are not
familiar with this operation.
ComponentWorks Automation Symbols B-4 © National Instruments Corporation

© National Instruments Corporation C-1 ComponentWorks Aut
C

ry

 and
 your

 quickly
P site,
try the
r
 staffed

 files
ownload
 to use
u can

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessa
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form
the configuration form, if your manual contains one, about your system configuration to answer
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
provide the information you need. Our electronic services include a bulletin board service, an FT
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first
electronic support systems. If the information available on these systems does not answer you
questions, we offer fax and telephone support through our technical support centers, which are
by applications engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
and documents to answer most common customer questions. From these sites, you can also d
the latest instrument drivers, updates, and example programs. For recorded instructions on how
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. Yo
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.
omation Symbols

 wide
t

l at the
 we can

al
act
Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
range of technical information. You can access Fax-on-Demand from a touch-tone telephone a
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mai
Internet address listed below. Remember to include your name, address, and phone number so
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technic
support number for your country. If there is no National Instruments office in your country, cont
the source from which you purchased your software to obtain support.

Country Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Québec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678
ComponentWorks Automation Symbols C-2 © National Instruments Corporation

nd use
orm

,

__

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, a
the completed copy of this form as a reference for your current configuration. Completing this f
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________ Phone (___) _____________________________________

Computer brand____________ Model ___________________Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter ________________________

Mouse ___yes ___no Other adapters installed___________________________________

Hard disk capacity _____MB Brand__

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: _______________________________________

 item.
, and
ore
your

ComponentWorks Automation Symbols Hardware and
Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each
Complete a new copy of this form each time you revise your software or hardware configuration
use this form as a reference for your current configuration. Completing this form accurately bef
contacting National Instruments for technical support helps our applications engineers answer
questions more efficiently.

National Instruments Products
Hardware revision ___

Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware ___

Programming choice ___

National Instruments software __

Other boards in system __

Base I/O address of other boards ___

DMA channels of other boards ___

Interrupt level of other boards __

Other Products
Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards ___

DMA channels of other boards ___

Interrupt level of other boards __

ducts.

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our pro
This information helps us provide quality products to meet your needs.

Title: Getting Results with ComponentWorks™ Automation Symbols

Edition Date: July 1998

Part Number: 322063A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) ___________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

Glossary
erly

ible
all
nd
Prefix Meanings Value

p- pico 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

t- tera- 1012

Numbers/Symbols

1D One-dimensional.

2D Two-dimensional.

3D Three-dimensional.

A

ActiveX Set of Microsoft technologies for reusable software components. Form
called OLE.

ActiveX control Standard software tool that adds additional functionality to any compat
ActiveX container. The Automation Symbols in ComponentWorks are
ActiveX controls. An ActiveX control has properties, methods, objects, a
events.

array Ordered, indexed set of data elements of the same type.

Automation Microsoft technology for cross application macro-programming.
© National Instruments Corporation G-1 ComponentWorks Automation Symbols

Glossary

Also

ing to

ame
n is
, a
 in
ally

sition

s a
vent
ined

ion or
C

callback (function) User-defined function called in response to an event from an object.
called an event handler.

cascading Process of extending the counting range of a counter chip by connect
the next higher counter.

Collection Control property and object that contains a number of objects of the s
type, such as pointers, axes, and plots. The type name of the collectio
the plural of the type name of the object in the collection. For example
collection of CWAxis objects is called CWAxes. To reference an object
the collection, you must specify the object as part of the collection, usu
by index. For example, CWGraph.Axes.Item(2) is the second axis in the
CWAxes collection of a graph.

column-major order Systematic way to organize the data in a 2D array by columns.

D

Delphi Borland Delphi programming environment.

DLL Dynamic Link Library.

driver Software that controls a specific hardware device, such as a data acqui
board.

E

event Object-generated response to some action or change in state, such a
mouse click or x number of points being acquired. The event calls an e
handler (callback function), which processes the event. Events are def
as part of an OLE control object.

event handler See callback (function) and event.

exception Error message generated by a control and sent directly to the applicat
programming environment containing the control.
ComponentWorks Automation Symbols G-2 © National Instruments Corporation

Glossary

he

r a

ges

tors

is or
 all
rty

een

ving
s

tion
F

fires Occurs. An event fires in response to predefined conditions, such as t
completion of a specified interval of time with a timer control, the
acquisition of a specified number of data points with a CWAI control, o
mouse click on a CWButton.

flange A rim on a pipe for guiding or attaching the pipe to another object. Flan
are decorative and not required.

form Window or area on the screen on which you place controls and indica
to create the user interface for your program.

Format Flexible specification that defines how a number is displayed on an ax
on some other display. The specification is a format string for formatting
values on a specific display. You specify the format string in the prope
sheet of a control.

FTP File Transfer Protocol. Protocol based on TCP/IP to exchange files betw
computers.

FTP Server Application running on a computer that enables the storing and retrie
of files by different clients via FTP. Most FTP servers allow anonymou
connections so that any networked user can exchange files.

G

GUI Graphical User Interface.

M

MB Megabytes of memory.

memory buffer Temporary storage for acquired or generated data.

method Function that performs a specific action on or with an object. The opera
of the method often depends on the values of the object properties.

Motor control ActiveX User Interface control that represents a motor in a system.
© National Instruments Corporation G-3 ComponentWorks Automation Symbols

Glossary

ic,

y

 its

ies
 plot
ph
O

object Software tool for accomplishing tasks in different programming
environments. An object can have properties, methods, and events.
You change an object’s state by changing the values of its properties.
An object’s behavior consists of the operations (methods) that can be
performed on it and the accompanying state changes.

See property, method, event.

Object Browser Dialog window that displays the available properties and methods for
the controls that are loaded. The Object Browser shows the hierarchy
within a group of objects. To activate the Object Browser in Visual Bas
press <F2>.

OCX OLE Control eXtension. Another name for ActiveX controls, reflected b
the .OCX file extension of ActiveX control files.

OLE Object Linking and Embedding. See ActiveX.

OLE control See ActiveX control.

P

Pipe control ActiveX User Interface control that represents a pipe in a system.

Pointer Indicator on an object. You can use a collection of pointers to display
different values on the same object. In the collection, each pointer is
referenced by an index in the collection and each individual pointer has
own properties such as color, style, mode, and so on.

property Attribute that controls the appearance or behavior of an object. The
property can be a specific value or another object with its own propert
and methods. For example, a value property is the color (property) of a
(object), while an object property is a specific Y axis (property) on a gra
(object). The Y axis itself is another object with properties, such as
minimum and maximum values.

Pump control ActiveX User Interface control that represents a pump in a system.
ComponentWorks Automation Symbols G-4 © National Instruments Corporation

Glossary

ing
,

es

ing

 ticks,
R

reference Link to an external code source in Visual Basic. References are anyth
that add additional code to your program, such as OLE controls, DLLs
objects, and type libraries. You can add references by selecting the
Tools»References… menu.

row-major order Systematic way to organize the data in a 2D array by rows.

S

sec Seconds.

Style Display style of a GUI object. An object can have different display styl
while maintaining the same functionality.

syntax Set of rules to which statements must conform in a particular programm
language.

U

UI User Interface.

V

Valve control ActiveX User Interface control that represents a valve in a system.

Value Pairs Pair that consists of a name and a value that you can use for custom
labels, and grid lines on the axis of a knob, slide, or graph.

Value Pairs Only control Control whose only valid values are its value pairs.

VB Microsoft Visual Basic.

VC++ Microsoft Visual C++.

Vessel control ActiveX User Interface control that represents a vessel in a system.
© National Instruments Corporation G-5 ComponentWorks Automation Symbols

Index
A
ActiveX controls, 1-1. See also controls.
application development

Delphi, 5-1 to 5-7
building user interface, 5-4 to 5-5
editing properties

programmatically, 5-6
events, 5-7
loading ComponentWorks controls into

palette, 5-2 to 5-3
methods, 5-7
programming with ComponentWorks,

5-6 to 5-7
running examples, 5-1

getting started, 2-4 to 2-6
Visual Basic, 3-1 to 3-10

automatic code completion, 3-9 to 3-10
building user interface, 3-2 to 3-5
developing event routines, 3-5 to 3-6
loading ComponentWorks controls into

toolbox, 3-2
pasting code into programs, 3-9
procedure overview, 3-1
using Object Browser, 3-6 to 3-8
working with methods, 3-5

Visual C++, 4-1 to 4-10
adding ComponentWorks Automation

Symbols controls to toolbar,
4-3 to 4-4

building user interface, 4-4 to 4-5
events, 4-9 to 4-10
methods, 4-8
MFC AppWizard, 4-2 to 4-3
procedure overview, 4-1
programming with ComponentWorks

controls, 4-5 to 4-6
properties, 4-6 to 4-8

Application Wizard, MFC, 4-2 to 4-3
automatic code completion, in Visual Basic,

3-9 to 3-10
Axis object, 8-3 to 8-4

B
bulletin board support, C-1

C
C++. See Visual C++.
code completion, automatic, in Visual Basic,

3-9 to 3-10
collection objects, 1-6 to 1-7
common questions, A-1 to A-7

controls, A-4 to A-7
installation and getting started, A-1 to A-3
Visual Basic, A-3 to A-4

ComponentWorks Automation Symbols
components, 1-1 to 1-2
examples structure, 2-3
exploring documentation, 2-1 to 2-3
getting started, 2-1 to 2-6
installing, 1-2 to 1-3
online reference, 2-2 to 2-3
overview, 1-1 to 1-2
sources for additional information, 2-6
system requirements, 1-2

ComponentWorks Support Web Site, 2-6
controls, 1-4 to 1-7. See also events; methods;

properties.
changing style programmatically, A-5
collection objects, 1-6 to 1-7
common questions, A-4 to A-7
© National Instruments Corporation I-1 ComponentWorks Automation Symbols

Index
loading into programming environments
Delphi, 5-2 to 5-3
Visual Basic, 3-2, A-3
Visual C++, 4-3 to 4-4

object hierarchy, 1-5 to 1-6
Pipe control, 6-1 to 6-7
properties, methods, and events, 1-4
Pump, Valve, and Motor controls,

7-1 to 7-4
Vessel control, 8-1 to 8-8

custom property page
definition, 1-8
example (figure), 1-8

customer communication, xiv, C-1 to C-2
CWPipeConnection object

accessing or changing, A-6 to A-7
modifying pipes, 6-6

D
Delphi, 5-1 to 5-7

building user interface, 5-4 to 5-5
editing properties programmatically, 5-6
events, 5-7
loading ComponentWorks controls into

palette, 5-2 to 5-3
methods, 5-7
newest version of Delphi required

(note), 5-1
programming with ComponentWorks,

5-6 to 5-7
running examples, 5-1

developing applications. See application
development.

distribution and redistribution files, B-1 to B-4
common questions, A-2
ComponentWorks Automation Symbols

evaluation, B-3
distribution procedure, B-1 to B-3

automatic installers, B-2
manual installation, B-2 to B-3

files required, B-1
running on target computer, B-3
run-time licenses, B-4
troubleshooting, B-4

documentation. See also online reference.
conventions used in manual, xiii-xiv
exploring, 2-1 to 2-3
organization of manual, xi-xiii
related documentation, xiv

E
electronic support services, C-1 to C-2
e-mail support, C-2
event handler routines, developing

Delphi, 5-7
overview, 1-11
Visual Basic applications, 3-5 to 3-6
Visual C++ applications, 4-9 to 4-10

events
definition, 1-4
learning about, 1-11
Pipe control, 6-7
Pump, Valve, and Motor controls, 7-2
Vessel control, 8-5 to 8-6

examples
becoming familiar with, 2-3
location of examples, 2-3

F
fax and telephone support numbers, C-2
Fax-on-Demand support, C-2
files installed on hard disk, 1-3
frequently asked questions. See common

questions.
FTP support, C-1

G
grid settings, Pipe control, 6-5
ComponentWorks Automation Symbols I-2 © National Instruments Corporation

Index

H
help. See online reference.

I
installation, 1-2 to 1-3

Administrator privileges required
(note), 1-2

common questions, A-1 to A-2
distribution and redistribution files,

B-2 to B-3
files installed on hard disk, 1-3
from floppy disks, 1-3

Item method, for setting properties, 1-10

L
Labels Object, 8-4

M
manual. See documentation.
methods

definition, 1-4
learning about, 1-11
setting properties, 1-10
working with control methods

Delphi, 5-7
overview, 1-10
Visual Basic, 3-5
Visual C++, 4-8

Microsoft Foundation Classes Application
(MFC) Wizard, 4-2 to 4-3

Motor control. See Pump, Valve, and Motor
controls.

O
Object Browser, in Visual Basic, 3-6 to 3-8
object hierarchy

example (figure), 1-6
overview, 1-5

OLE (Object Linking and Embedding)
controls, 1-1. See also controls.

online reference
accessing, 1-1, 1-11, 2-2
ComponentWorks Support Web Site, 2-6
finding specific information, 2-3
learning about properties, methods, and

events, 1-11
overview, 2-2
searching complete text, 2-6

P
pasting code, in Visual Basic, 3-9
pipe connection. See CWPipeConnection

object.
Pipe control, 6-1 to 6-7

adjusting size (figure), 6-4
aligning, A-7
changing position (figure), 6-4
common questions, A-4 to A-7
customizing pipes, 6-3 to 6-4
CWPipeConnection object, 6-6,

A-6 to A-7
default connections, 6-2
events, 6-7
grid settings, 6-5
overview, 1-1, 6-1
Pipe Design menu, 6-2
Style property page, 6-3

Pipe Design menu
Design menu as alternative (note), 6-2
purpose and use, 6-2

Pointer object, 8-3
Pointers collection, 8-3
© National Instruments Corporation I-3 ComponentWorks Automation Symbols

Index

properties
definition, 1-4
editing programmatically

common questions, A-5
Delphi, 5-6
overview, 1-9
Visual Basic, 3-4 to 3-5

learning about, 1-11
setting, 1-7 to 1-11

developing event handler
routines, 1-11

Item method, 1-10
using property pages, 1-7 to 1-8
working with methods, 1-10

using in programming environments
Delphi, 5-5
Visual Basic, 3-3 to 3-5
Visual C++, 4-6 to 4-8

property pages
custom property page

definition, 1-8
example (figure), 1-8

Pipe control
Grid property page, 6-5
Style property page, 6-3

setting properties for controls, 1-7 to 1-11
Visual Basic default property pages

(figure), 1-8
Pump, Valve, and Motor controls, 7-1 to 7-4

common questions, A-4 to A-7
events, 7-2
overview, 1-1 to 1-2, 7-1
setting default value, A-4 to A-5
tutorial, 7-2 to 7-4

developing program code, 7-3 to 7-4
form design, 7-2 to 7-3
testing the program, 7-4

Q
questions about ComponentWorks

Automation Symbols. See common
questions.

R
redistribution files. See distribution and

redistribution files.
requirements for getting started, 1-2
run-time licenses, B-4

S
software object, 1-5
Statistics object, 8-5
system requirements, 1-2

T
technical support, C-1 to C-2
telephone and fax support numbers, C-2
Ticks Object, 8-4
troubleshooting distribution and redistribution

files, B-4

U
user interface, building

Delphi applications, 5-4 to 5-5
placing controls, 5-4
using property pages, 5-5

Visual Basic applications, 3-2 to 3-5
editing properties programmatically,

3-4 to 3-5
using property pages, 3-3 to 3-4

Visual C++ applications, 4-4 to 4-5
ComponentWorks Automation Symbols I-4 © National Instruments Corporation

Index
V
ValuePair object

accessing or changing, A-6 to A-7
description, 8-5

ValuePairs collection, 8-4
Valve control. See Pump, Valve, and Motor

controls.
Vessel control, 8-1 to 8-8

Axis object, 8-3 to 8-4
common questions, A-4 to A-7
events, 8-5 to 8-6
Images property, A-7
Labels Object, 8-4
object hierarchy (figure), 8-2
overview, 1-2, 8-1 to 8-2
Pointer object, 8-3
Pointers collection, 8-3
setting default value, A-4 to A-5
Statistics object, 8-5
Ticks Object, 8-4
tutorial, 8-6 to 8-8

developing program code, 8-7 to 8-8
form design, 8-6 to 8-7
testing the program, 8-8

ValuePair object, 8-5
ValuePairs collection, 8-4
Vessel object, 8-2

Vessel object, 8-2
Visual Basic, 3-1 to 3-10

automatic code completion, 3-9 to 3-10
building user interface, 3-2 to 3-5

editing properties programmatically,
3-4 to 3-5

using property pages, 3-3 to 3-4
common questions, A-3 to A-4
default property pages (figure), 1-8
developing event routines, 3-5 to 3-6
loading ComponentWorks controls into

toolbox, 3-2, A-3
pasting code into programs, 3-9

procedure overview, 3-1
using Object Browser, 3-6 to 3-8
working with methods, 3-5

Visual C++, 4-1 to 4-10
adding ComponentWorks

controls to toolbar, 4-3 to 4-4
building user interface, 4-4 to 4-5
events, 4-9 to 4-10
methods, 4-8
MFC AppWizard, 4-2 to 4-3
procedure overview, 4-1
programming with ComponentWorks

controls, 4-5 to 4-6
properties, 4-6 to 4-8

W
Web site for ComponentWorks support, 2-6
© National Instruments Corporation I-5 ComponentWorks Automation Symbols

	Getting Results with ComponentWorks™ Automation Symbols
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction to ComponentWorks Automation Symbols
	What Are ComponentWorks Automation Symbols?
	System Requirements
	Installing ComponentWorks
	Installing from Floppy Disks
	Installed Files

	About the ComponentWorks Controls
	Properties, Methods, and Events
	Object Hierarchy
	Collection Objects

	Setting the Properties of an ActiveX Control
	Using Property Pages
	Changing Properties Programmatically
	Item Method
	Working with Control Methods
	Developing Event Handler Routines

	Learning Properties, Methods, and Events

	Chapter 2 Getting Started with the ComponentWorks Automation Symbols
	Explore the ComponentWorks Documentation
	Getting Results with ComponentWorks Automation Symbols Manual
	Automation Symbols Online Reference
	Accessing the Online Reference
	Finding Specific Information

	Become Familiar with the Examples Structure
	Develop Your Application
	Seek Information from Additional Sources

	Chapter 3 Building ComponentWorks Applications with Visual Basic
	Developing Visual Basic Applications
	Loading ComponentWorks Controls into the Toolbox
	Building the User Interface Using ComponentWorks
	Using Property Pages
	Using Your Program to Edit Properties

	Working with Control Methods
	Developing Control Event Routines
	Using the Object Browser to Build Code in Visual Basic
	Pasting Code into Your Program
	Adding Code Using Visual Basic Code Completion

	Chapter 4 Building ComponentWorks Applications with Visual C++
	Developing Visual C++ Applications
	Creating Your Application
	Adding ComponentWorks Controls to the Visual C++ Controls Toolbar
	Building the User Interface Using ComponentWorks
	Programming with the ComponentWorks Controls
	Using Properties
	Using Methods
	Using Events

	Chapter 5 Building ComponentWorks Applications with Delphi
	Running Delphi Examples
	Developing Delphi Applications
	Loading ComponentWorks Controls into the Component Palette
	Building the User Interface
	Placing Controls
	Using Property Pages

	Programming with ComponentWorks
	Using Your Program to Edit Properties
	Using Methods
	Using Events

	Chapter 6 Using the Pipe Control
	Pipe Control Overview
	Using the Pipe Design Menu
	Customizing the Pipe
	Grid Settings
	CWPipeConnection
	Events

	Chapter 7 Using the Pump, Valve, and Motor Controls
	Overview
	Events

	Tutorial: Pipe, Pump, and Valve Controls
	Designing the Form
	Developing the Program Code
	Testing Your Program

	Chapter 8 Using the Vessel Control
	Overview
	Vessel Object
	Pointers Collection
	Pointer Object
	Axis Object
	Ticks and Labels Objects
	ValuePairs Collection
	ValuePair Object
	Statistics Object
	Events
	Image Object
	Animation

	Tutorial: Vessel Control
	Designing the Form
	Developing the Program Code
	Testing Your Program

	Appendix A Common Questions
	Installation and Getting Started
	Visual Basic
	Automation Symbols Controls

	Appendix B Distribution and Redistributable Files
	Files
	Distribution
	Automatic Installers
	Manual Installation

	ComponentWorks Automation Symbols Evaluation
	Run-Time Licenses
	Troubleshooting

	Appendix C Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	ComponentWorks Automation Symbols Hardware and Software Configuration Form
	National Instruments Products
	Other Products

	Documentation Comment Form

	Glossary
	Numbers/Symbols
	A
	C
	D
	E
	F
	G
	M
	O
	P
	R
	S
	U
	V

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Figures
	Figure 1-1. Vessel Control Object Hierarchy
	Figure 1-2. Visual Basic Default Property Page
	Figure 1-3. ComponentWorks Custom Property Page
	Figure 3-1. Visual Basic Property Pages
	Figure 3-2. ComponentWorks Custom Property Pages
	Figure 3-3. Selecting Events in the Code Window
	Figure 3-4. Viewing CWMotor in the Object Browser
	Figure 3-5. Viewing CWVessel in the Object Browser
	Figure 3-6. Visual Basic 5 Code Completion
	Figure 4-1. New Dialog Box
	Figure 4-2. MFC AppWizard— Step 1
	Figure 4-3. CWPipe Control Property Pages
	Figure 4-4. MFC ClassWizard—Member Variable Tab
	Figure 4-5. Viewing Property Functions and Methods in the Workspace Window
	Figure 4-6. Event Handler
	Figure 5-1. Delphi Import ActiveX Control Dialog Box
	Figure 5-2. ComponentWorks Controls on a Delphi Form
	Figure 5-3. Delphi Object Inspector
	Figure 5-4. ComponentWorks Pipe Control Property Pages
	Figure 5-5. Delphi Object Inspector Events Tab
	Figure 6-1. Pipe Design Menu
	Figure 6-2. Style Property Page for a Pipe Control
	Figure 6-3. Changing the Position of a Pipe Control
	Figure 6-4. Pipe Thickness and Fill Diameter of a Pipe Control
	Figure 6-5. Grid Property Page
	Figure 6-6. Flange Width and Extent
	Figure 6-7. End Diameter of a Pipe Control
	Figure 8-1. Vessel Control Hierarchy of Objects
	Figure 8-2. Custom Mixer Bitmap

	Tables
	Table 2-1. Chapters about Specific Programming Environments
	Table 2-2. Chapters about Specific Controls

